
2015 IEEE Symposium on Visual Languages and Human-Centric Computing (VLlHCC)

A Study of Interactive Code Annotation for Access

Control Vulnerabilities

Tyler T homas, Bill Chu, Heather Lipford

Department of Software and

Information Systems

University of North Carolina at Charlotte

Charlotte, North Carolina 28223

Abstract-While there are a variety of existing tools to help
detect security vulnerabilities in code, they are seldom used by
developers due to the time or security expertise required. We
are investigating techniques integrated within the IDE to help
developers detect and mitigate security vulnerabilities. In this
paper, we examine using interactive annotation for access control
vulnerabilities. We evaluated whether developers could indicate
access control logic using interactive annotation and understand
the vulnerabilities reported as a result. Our study indicates that
developers can easily find and annotate access control logic but
can struggle to use our tool to trace the cause of the vulnerability.
Our results provide design guidance for improving the interaction
and communication of such security tools with developers.

I. INTRODUCTION

Software security vulnerabilities are a leading cause for
many data breaches [1], resulting in billions of dollars of
records stolen. Detecting and resolving security vulnerabilities
in software, especially later in the development cycle, can be
both time-consuming and expensive. Static analysis techniques
can help developers detect vulnerabilities early in the develop
ment process - even before executing the code. There are
many widely used research and commercial static analysis
tools available [2]-[7]. However, these tools are underused [8]
in part because of their high false positive rates [9], and the
need for security expertise to write customized rules to reduce
those false positives.

Our goal is to help developers address security concerns
and reduce security vulnerabilities while they write code. We
are examining techniques for helping developers detect and
mitigate security issues within the Integrated Development
Environment (IDE). We refer to these techniques as interac
tive static analysis [10]. We have previously prototyped and
evaluated an interactive static analysis tool named ASIDE (Ap
plication Security in the IDE) for basic vulnerabilities such as
SQL Injection and Cross Site Scripting. We demonstrated that
providing warnings and explanations to developers alongside
their code improves awareness of these security vulnerabilities
and how to prevent them [11].

We are now expanding our approach to include interac
tive annotation, where developers are prompted to indicate
security-critical components in the code, both to remind them
to perform security actions and to document application
specific security information. This in turn allows a static
analysis tool to reason more accurately about the code and

978-1-4673-7457-6/15/$3\.00 ©2015 IEEE

Justin Smith, Emerson Murphy-Hill

Department of Computer Science

North Carolina State University

Raleigh, North Carolina 27606

detect more complex vulnerabilities. In our first prototype of
this approach, we are examining access control decisions.

Access control vulnerabilities have been consistently
ranked as among one of the top security vulnerabilities in
applications [12]. These vulnerabilities result from program
logic errors made by developers, resulting in missing or
inconsistent access control checks for sensitive operations [l3].
Our tool asks a developer to annotate the access control logic
for sensitive database operations, prompting developers to
review the access control code, and is then used for additional
static analysis. We examined the performance of our approach
on vulnerability detection for 6 open source projects, and
found that we detected more vulnerabilities than existing
automated approaches, with significantly less work for users
than commercial tools require [13]. However, our approach
depends on developers correctly performing the annotations,
and understanding the resulting vulnerability warnings. Thus,
we now examine this interaction.

We report on a user study of ASIDE's interactive anno
tation, with the following objectives: evaluate the usability of
our interface, and developers' behaviors in annotating code;
examine how developers identify and understand access control
logic within code; and examine how developers interpret
and understand vulnerability warnings that result from their
annotations. Our results will help to improve the interface
of our tool, as well as provide a deeper understanding of
how such tools can communicate with developers regarding
security vulnerabilities generally, and access control more
specifically. Future commercial implementations of interactive
static analysis and interactive annotation with greater usability
will ultimately result in fewer security vulnerabilities.

II. RELATED WORK

The use of code annotation has been explored in a variety
of research in order to improve program efficiency (e.g. [14],
[15]), document code, or make the code easier for people
to understand (e.g. [10], [14]-[16]), or to identify errors or
problems during development (e.g. [16]-[18]). Our work falls
under the last goal. However, instead of using interactive
annotation to identify errors, we are using it for annotating
security-related decisions to aid in vulnerability detection.

Previous research has explored the use of alternative types
of code annotation in vulnerability detection. Qui et al. propose
an annotation toolkit, where developers make annotations

in the form of API calls [18]. At runtime, these calls are
then capable of detecting denial of service attacks and other
resource abuses. There are also several commercial annotation
languages for assisting static analysis tools in detecting bugs,
including security vulnerabilities [19]. The security analysis
tool FindBugs also allows the developer to textually annotate
their code to improve the accuracy of the analysis [14].
FindBugs can detect SQL injection, cross site scripting, hard
coded database passwords, and the creation of a cookie from
untrusted input.

Despite the variety of uses of code annotation, the majority
of annotations utilize text. In other words, developers adding
annotations do so by adding additional comments or code
during development. This means that developers must learn
an additional annotation language, and remember how and
when to use it in order to complete the annotations. We believe
this added burden will limit the use and effectiveness of any
solutions relying on code annotation. Developers are unlikely
to be motivated to put in significant upfront effort to learn a
new language to assist with security.

III. ASIDE

Application Security for the Integrated Development En
vironment (ASIDE) is a plug-in for the Eclipse PHP and
Java Development Environments [10], and currently designed
for Web applications. ASIDE generates requests for its users
to associate annotations with security sensitive operations.
In [10] we detail how ASIDE generates requests for, and
detects access control vulnerabilities using these annotations.
Annotation requests are indicated by a yellow highlight of the
sensitive code, and a yellow question mark alongside the code
(Figure 1). Clicking on the icon or code provides a menu
where the developer can access ASIDE explanations, as well
as choose to enter annotation mode.

In annotation mode, the developer highlights the statements
performing access control for the sensitive operation. In doing
so, the developer is reminded to add such checks, if they are
not already implemented. An access control check is a Boolean
condition, or a call to a function that throws an exception.
ASIDE indicates the annotation with a green highlight and a
small green diamond next to the code. The sensitive operation
also turns green when an annotation is added, with the icon
changing to a green check mark. Once the annotation is made,
ASIDE leaves annotation mode and the developer returns to the
task of coding. With the annotations provided by the developer,
static analysis is used to detect vulnerabilities, which are then
indicated with a red icon next to the sensitive operation.
Our vulnerability detection algorithms and performance are
detailed in [13]. ASIDE's current interface has been iteratively
developed based on the lessons learned through our use with
several open source projects as well as a small formative
study [20]. We now report the results of a full user study on
interactive annotation and their implications for ASIDE and
similar security tools.

IV. METHODOLOG Y

We recruited participants from advanced prograrmning
classes offered at the University of North Carolina at Charlotte
and North Carolina State University. We chose to use students

Fig. 1. Annotation request in Gold Rush, shown with a yellow highlight and
question mark icon.

from these classes since it is often difficult to obtain a
large sample of professional developers for academic research.
Additionally, since most of these students are either almost
finished with an undergraduate degree or pursuing a graduate
degree, we feel that data obtained from them may be similar
to that obtained from entry level professional developers.

Participants from UNC Charlotte interacted with ASIDE
running on a project called Gold Rush, an internally devel
oped Java-based banking application (99 files) to teach web
application security. Participants had just completed a class
assignment involving this code, and were thus familiar with
it. Participants from NC State interacted with ASIDE running
on a project called iTrust, an open source medical information
system (1,860 files). Participants had previously fixed real bugs
and added additional features to iTrust over the course of a
semester in a senior-level undergraduate software engineering
course. We intentionally chose code which would be somewhat
familiar to students to simulate the situation of a developer
working within their own projects.

For each project, we created a set of scenarios for partic
ipants to examine. The code of both projects was modified
slightly so that we could induce several additional access
control vulnerabilities. To simplify the tasks and time involved,
we ensured that each scenario only involved code in one
file, and we only showed requests and vulnerabilities for our
scenarios (and suppressed any others ASIDE would normally
identify). These scenarios included:

• Requests for access control logic, requiring anno
tation. All scenarios contained one piece of access
control logic. However, some scenarios were very sim
ple while others varied in complexity and contained
much more code between the start of the file and the
sensitive operation.

• Request for access control logic, but where the logic
was missing from the code.

• A false annotation request - where an access control
check was unneeded. We provided one false annota
tion request to observe how users would react.

• Vulnerability warning as a result of missing or incor
rect access control in the code.

Participants were first given a brief introduction to ASIDE,
and allowed to interact with a trainer example before beginning
the study. Participants were then shown the files with the
requests and warnings, in the same order. For every annotation
request participants were asked to "annotate the access control
logic, if it exists, for this particular annotation request or
warning." When participants made the annotation, they were
asked why they chose a particular line or lines of code as the

access control logic. They were also asked about the meaning
of warnings, and how they would fix any issues they identified.
When completed, they were then asked several questions about
their perceptions and use of ASIDE. We recorded the audio
and screen activity during the session. Data was analyzed by
transcribing the audio and creating notes based on the screen
recordings. The primary author performed open coding on the
transcriptions and notes, to determine performance and look
for common patterns and interesting responses.

V. RESULTS

We had 28 participants - 13 (9 male, 4 female) were from
UNC Charlotte and examined the Goldrush system, and 15 (14
male, 1 female) were from NC State and examined iTrust. 21
were undergraduate students in computing, while the rest were
Master's students. Most participants had taken 1 to 3 security
courses and around 5 courses that included programming as a
major component. 6 participants reported that they had worked
as a professional developer.

A. Interactive Annotation

Our 28 participants encountered a total of 125 annotation
requests and 56 warnings. Users felt our interface was very
intuitive and that annotations were very easy to make (n=26) as
they were able to complete an annotation in all but 1 instance.
By inspecting the screen recordings, we determined that par
ticipants annotated the right access control checks or correctly
identified reasons why an annotation was not necessary in 141
of the 181 (78%) annotation requests and warnings. We inves
tigated whether there were differences in accuracy between
those with more or less programming experience, or more
or less security experience, but did not find any significant
differences. This is actually encouraging because it means that
even participants with lower progranuning experience were
still able to use ASIDE effectively, although we did anecdotally
observe that the more experienced programmers spoke more
confidently.

There were a variety of incorrect annotations, such as
variable declarations, the function request.getParameter() since
it is where sensitive data enters the program, or the "try" of
an encapsulating try block. Two participants also annotated the
sensitive operation instead of the access control checks. ASIDE
could reduce such confusion by either indicating potentially
valid annotations or checking annotations after they are made
(e.g. code that actually contains a Boolean conditional state
ment). The study prototype did not perform verification.

In fact, three participants expressed confusion about
whether or not ASIDE could verify their annotation. The green
color and green check that appeared after an annotation was
complete seemed to indicate a false sense that the annotation
was being checked by the system and was found to be correct:

''I'm gonna go ahead and annotate it, and we'll see
if that makes it happy."

In order to detect vulnerabilities, our tool requires that users
highlight a Boolean conditional statement or a function that
throws an exception. Participants generally highlighted either
entire lines or small blocks of code containing such statements,
such as the entire if code block containing the conditional

statement. Our current prototype can not yet handle this
behavior with sufficient flexibility. This implies that our tool
will either need to help users identify and highlight just the
smaller snippet of access control logic, or will need to parse
that logic out of the larger block of code that users identify.

Interestingly, several participants saw the requests for anno
tation as requests for "security checks" in a general sense and
would search for validation code. When asked why they chose
to annotate certain pieces of code, they would talk about how
the code might be vulnerable to cross site scripting attacks or
SQL injection and how the annotated code fixed that problem.
Yet those issues would be corrected by validating untrusted
input, rather than an access control check. Surprisingly, many
of these participants actually still annotated the correct access
control logic. Thus, these participants had some generic secu
rity knowledge, and while they were confused as to why, they
did equate the access control logic they found in the code with
somehow providing security.

B. Interpretation of Warnings

27 of 28 participants (96%) understood that red warnings
were indicating a possible security vulnerability. It means that
the tool was effectively able to communicate this information
to participants. Five participants did not give confident answers
as to whether or not a sensitive operation with a warning was
actually vulnerable (a true positive). We saw an interesting
pattern, where participants who expressed confusion discussed
"how" vulnerable a piece of vulnerable code was, rather than
simply whether the code really was or was not vulnerable. The
following responses illustrate this mental model of vulnerabil
ities:

"I think there is a degree of vulnerability to it."

The tool was less successful at helping participants understand
why a warning occurred, and thus how to mitigate the vulnera
bility. Participants were generally good at identifying the cases
where access control logic was missing in the code. However,
they did not realize that their previous annotations were related
to a warning, and that they should examine the annotations
for the same database operations to identify mismatches that
may be causing the vulnerability. One reason is that only
four participants (14%) looked at the contextual help ASIDE
provided regarding a vulnerability. Instead, our participants
simply looked at the code to determine the validity and fixes
for warnings.

C. User Perceptions and Comments

General user impressions were overwhelmingly pOSItIve,
with only one participant responding negatively. When asked,
no participants felt that the process was tedious. Multiple
participants expressed concern that the task of interactive
annotation could become tedious on large projects, but they
also felt that more false positives and higher detection rates
were preferred over fewer false positives and lower detection
rates.

"That made me stop and think. When I'm in a devel
oper role, I'm always thinking about the functionality
because that's what I get paid to deliver.It forced me

to stop and think about security even if just for a
few minutes. It was good."

Additionally, all participants except one stated that they would
use ASIDE in the real world. Six participants explicitly or
implicitly recommended that ASIDE be further developed into
a code review tool. One participant even suggested that it
would be nice to be able to mark confusing annotation requests
or warnings with a note for another developer to annotate or
address later.

These user comments are particularly interesting in that
they reflect our envisioned future work. In our previous work,
we examined the possibility of automatically generated annota
tions and concluded that automatic annotation is insufficient on
its own and a hybrid approach involving a human is required
[l3]. However, we did not communicate this information to
any of the participants of this study.

VI. DISCUSSION

Not surprisingly, graphically highlighting code in order
to make an annotation was an easy task. This should ease
adoption of any mechanism requiring annotations. One im
provement to the interface could be finding an acceptable way
to modify the icon for annotation requests. For some users, the
color yellow implied caution or warning, instead of a request
for information which we were trying to convey. This may have
led to the mindset of certain operations (those in yellow) being
"less" vulnerable than others (those in red). One participant
suggested the color purple in place of yellow, although there is
no standard color equated with information requests. Perhaps
the icon itself can be modified in some way to represent a
request for information instead of caution or warning.

Some participants annotated code which could never func
tion as access control logic, such as variable declarations.
Accuracy may be improved if ASIDE could provide feedback
on what is potentially annotatable if possible, such as through
highlighting, or autocompleting highlighting that has been
started. Several of our participants also felt that the green
icons were somehow indicating approval of their annotations.
We need to investigate efficient algorithms to provide such
feedback and validation before or during the act of annotation,
which can help users who did not fully understand access
control, and ensure that annotations are all valid. This would
also help the tool to accurately perform vulnerability detection.

Even those who did not fully understand access control did
a reasonable job of responding to requests and annotating the
code. They also did a reasonable job of noticing when access
control was missing. This is a positive and encouraging result,
as it implies that many developers will be able to accomplish
this task, and validates that our approach could be effective
for a range of developers. Perhaps if annotations could be
reviewed by a human with security knowledge, developers
could increase their understanding of access control based on
feedback from the human.

First, only four participants read the contextual help for a
warning, so clearly that needs to be made more prominent
and part of the interaction with ASIDE, and not just look
like interface help. Second, our tool should more clearly
convey the correct mental model of what a warning means,

and what actions should follow. For example, one participant
reported that the color red seemed to suggest an error. While
vulnerabilities are potentially serious issues, they are very
different from errors and will not stop program compilation.
In addition, our warnings are about potential vulnerabilities. A
human must still determine whether or not a true vulnerability
exists based on a detailed examination of the code. Again,
ideally our tool should help developers make this determination
as much as they are able, and not simply imply that there is a
problem.

Users also did not connect their previous annotations with
subsequent warnings. A warning should imply that what is
annotated may somehow be wrong - usually that the access
control code that was annotated needs to be corrected - some
logic is missing or wrong. So, users should examine previous
annotations for all instances of that operation when there is a
warning. Tracing the cause of a vulnerability would involve
comparing the access control logic across those operations.
Helping users to do that is a challenging task, and clearly
where we need to focus on creative design solutions. The tool
interface needs to make that more prominent, and easier to
perform. The explanations regarding the warning that were
shown in the side dialog of the menu were ignored. A
modification to the interface that could visually show a link
between the warning and relevant annotations within the code
window itself may prove beneficial.

VII. CONCLUSION

We believe that developers can be provided with tools
to better enable them to detect and mitigate security vulner
abilities, enhancing the security of their applications. Thus
we are investigating how to communicate and interact with
developers regarding security vulnerabilities so that such tools
are usable and effective. As we have demonstrated, developers
could benefit from such tools with greater awareness of the
security implications of their code and potential vulnerabilities.
Even those with lesser programming and security experience
were able to indicate security-related decisions in the code,
thus providing valuable information to drive more complex
analysis or for use in later code review. Our participants were
appreciative of the awareness of security that our tool provided.
Providing annotations interactively through highlighting was
intuitive, yet also requires more flexibility from the tool in
allowing users to highlight larger chunks of code than are
needed. Our results provide valuable feedback into our tool
design, and in particular highlight the challenge of helping
developers trace and fix complex vulnerabilities and their
relationship to the annotated security discussions. This study
can serve as a baseline for additional examination of interactive
annotation interfaces in security tools, and we hope to use our
results to inform the design of future interfaces for interactive
annotation.

ACKNOWLEDGMENT

This work was partially supported by NSF grants 1129190,
l318854, and DOE award number P200A130088. We would
also like to thank Jun Zhu and Mahmood Mohamadi for their
work on the ASIDE implementation.

REFERENCES

[I] [Online]. Available: hup://www.eweek.com/security/software-
vulnerabilities-lead-to-internal-security-problems-kaspersky.html

[2] V. Balachandran, "Reducing human effort and improving quality
in peer code reviews using automatic static analysis and
reviewer recommendation," in Proceedings of the 2013 International
Coriference on Software Engineering, ser. ICSE '13. Piscataway,
NJ, USA: IEEE Press, 2013, pp. 931-940. [Online]. Available:
hUp://dl.acm.org/citation.cfm?id=2486788.24869IS

[3] A. K. Tripathi and A. Gupta, "A controlled experiment to evaluate
the effectiveness and the efficiency of four static program analysis
tools for java programs," in Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering,
ser. EASE '14. New York, NY, USA: ACM, 2014, pp. 23:1-23:4.
[Online]. Available: hUp://doi.acm.org/IO.l14SI2601248.2601288

[4] "Findbugs," 201S. [Online]. Available: hup://findbugs.sourceforge.net/

[S] "Fortify," 201S. [Online]. Available:
hUp://www8.hp.com/us/en/software-solutions/staticcodeanalysissast/

[6] "Codepro," 201S. [Online]. Available:
hups://developers.google.com/javadevtools/codepro/docl?hl=en

[7] "Pmd," 201S. [Online]. Available: hups://pmd.github.io/

[8] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and
W. Pugh, "Using static analysis to find bugs," IEEE Softw.,
vol. 2S, no. S, pp. 22-29, Sep. 2008. [Online]. Available:
hup://dx.doi.org/10.l109/MS.2008.130

[9] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, "Why
don't software developers use static analysis tools to find
bugs?" in Proceedings of the 2013 International Conference
on Software Engineering, ser. ICSE ' 13. Piscataway, NJ,
USA: IEEE Press, 2013, pp. 672-681. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2486788.2486877

[10] J. Zhu, J. Xie, H. R. Lipford, and B. Chu, "Supporting secure program
ming in web applications through interactive static analysis," Journal
of Advanced Research, vol. S, no. 4, pp. 449-462, 2014.

[11] 1. Xie, H. Lipford, and B.-T. Chu, "Evaluating interactive support
for secure programming," in Proceedings of the SlGCH1 Coriference
on Human Factors in Computing Systems, ser. CHI ' 12. New
York, NY, USA: ACM, 2012, pp. 2707-2716. [Online]. Available:
hUp://doi.acm.orgIl0.114SI2207676.220866S

[12] "Top ten vulnerabilities," 2013. [Online]. Available:
hups://www.owasp.orgiindex.php/Top_10_2013-Top_10

[13] J. Zhu, B. Chu, H. Lipford, and T. Thomas, "Mitigating access control
vulnerabilities through interactive static analysis," in ACM Symposium

on Access Control Models and Technologies. ACM, 201S.

[14] M. Beron, P. Henriques, M. J. Pereira, and R. Uzal, "Static and dynamic
strategies to understand c programs by code annotation," 2007.

[IS] B. Grant, M. Mock, M. Philipose, C. Chambers, and S. J. Eggers, "Dyc:
an expressive annotation-directed dynamic compiler for c," T heoretical
Computer Science, vol. 248, no. I, pp. 147-199, 2000.

[16] U. Dekel and J. D. Herbsleb, "Pushing relevant artifact annotations in
collaborative software development," in Proceedings of the 2008 ACM

conference on Computer supported cooperative work. ACM, 2008,
pp. 1-4.

[17] C. Flanagan and K. R. M. Leino, "Houdini, an annotation assistant
for esc/java," in FME 2001: Formal Methods for 1ncreasing Software

Productivity. Springer, 2001, pp. SOO-SI7.

[18] X. Qie, R. Pang, and L. Peterson, "Defensive programming: Using
an annotation toolkit to build dos-resistant software," ACM SIGOPS

Operating Systems Review, vol. 36, no. SI, pp. 4S-60, 2002.

[19] "Using sal annotations to reduce c/c++ code defects." [Online].
Available: http://msdn.microsoft.com/enus/library/ms I 82032.aspx

[20] H. Lipford, T. Thomas, B. Chu, and E. Murphy-Hill, "Interactive code
annotation for security vulnerability detection," in Proceedings of the

2014 ACM Workshop on Security Information Workers, ser. SlW '14.
New York, NY, USA: ACM, 2014, pp. 17-22. [Online]. Available:
hUp://doi.acm.org/1O.114SI2663887.2663901

