2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

Supporting Effective Strategies for Resolving
Vulnerabilities Reported by Static Analysis Tools

Justin Smith
Department of Computer Science
North Carolina State University
Raleigh, North Carolina 27606
Email: jssmitl 1 @ncsu.edu

Abstract—Static analysis tools detect potentially costly security
defects early in the software development process. However, these
defects can be difficult for developers to accurately and efficiently
resolve. The goal of this work is to understand the vulnerability
resolution process so that we can build tools that support more
effective strategies for resolving vulnerabilities. In this work,
I study developers as they resolve security vulnerabilities to
identify their information needs and current strategies. Next, I
study existing tools to understand how they support developers’
strategies. Finally, I plan to demonstrate how strategy-aware
tools can help developers resolve security vulnerabilities more
accurately and efficiently.

I. INTRODUCTION

Static analysis tools, like Coverity [1] and Findbugs [2],
enable developers to detect security vulnerabilities early in de-
velopment. These tools locate and report on potential software
security vulnerabilities, such as SQL injection and cross-site
scripting, even before code executes. Detecting these defects
early is important, because long-lingering defects may be more
expensive to fix [3]. According to a recent survey by Christakis
and colleagues, developers seem to recognize the importance
of detecting security vulnerabilities with static analysis; among
several types of code quality issues, developers rank security
issues as the highest priority for static analysis tools to
detect [4].

To actually make software more secure, however, static
analysis tools must go beyond simply detecting vulnerabilities.
These tools must be usable and enable developers to resolve
the vulnerabilities they detect. As Chess and McGraw argue,
“Good static analysis tools must be easy to use, even for
non-security people. This means that their results must be
understandable to normal developers who might not know
much about security and that they educate their users about
good programming practice” [5].

Unfortunately, evidence suggests existing tools are not easy
for developers to use. Researchers cite several related reasons
why these tools do not help developers resolve defects, for
instance, the tools: produce “bad warning messages” [4] and
“miscommunicate” with developers [6]. As a result, developers
make mistakes and need help resolving security vulnerabilities
due to the poor usability of security tools [7].

978-1-5386-4235-1/18/$31.00 (©2018 IEEE

Recently, Acar and colleagues introduced a research agenda
for improving the usability of security tools, explaining that
“Usable security for developers has been a critically under-
investigated area” [8]. The goal of this thesis is to investigate
and improve the usability of security-oriented static analysis
tools so that we can ultimately enable developers to create
more secure software.

II. VULNERABILITY RESOLUTION STRATEGIES

My thesis studies the usability of security-oriented static
analysis tools through the lens of vulnerability resolution
strategies. Building on Bhavani and John’s definition of a
strategy [9], we define a vulnerability resolution strategy as:
a developers’ method of task decomposition that is non-
obligatory and directed toward the goal of resolving a se-
curity vulnerability. My thesis argues that tools can better
help developers resolve vulnerabilities by presenting effective
vulnerability resolution strategies alongside the defects they
detect.

III. USABILITY OF STATIC ANALYSIS

Outside the domain of security, researchers have studied
the human aspects of using static analysis tools to iden-
tify and resolve defects. Muske and Serebrenik survey 79
studies that describe approaches for handling static analysis
alarms [10]. They organize existing approaches into seven
categories, which include “Static-dynamic analysis combina-
tions” and “Clustering.” Sadowski and colleagues [11] report
on the usability of their static analysis ecosystem at Google,
Tricorder. Their experiences suggest that warnings should be
easy to understand and fixes should be clear, which motivates
the work in this thesis. Similarly, Ayewah and colleagues
describe their experiences running static analysis on large
code bases. They make suggestions for how tools should help
developers triage the numerous warnings that initially might
be reported [12]. In comparison, our work focuses on how
developers resolve individual security vulnerabilities.

IV. EVALUATION PLAN

Phase 1 (Complete): What information do developers
need while using static analysis tools to diagnose potential
security vulnerabilities? To understand developers’ informa-
tion needs while using a security-oriented static analysis tool,

267

2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

I conducted a think-aloud study with ten participants [13]. I
observed participants as they assessed four potential security
vulnerabilities using Find Security Bugs [14], a security ex-
tension of FindBugs [2]. To identify information needs, a col-
laborator and I coded transcriptions from participants’ audio
recordings. To identify emergent categories in the information
needs, we conduced an open card sort. Our card sort was
validated by two external researchers, who substantially agreed
with our categorization (k = .63 and .k = .70, respectively).
This study provides us with an initial framework to understand
the vulnerability resolution process.

Phase 2 (Complete): What are developers’ strategies for
acquiring the information they need? We were motivated to
extend our prior information needs study, because we wanted
to understand how developers answered, or failed to answer,
their questions. In this follow-up work we explored how devel-
opers acquire the information they need through strategies. To
answer this second research question, we reanalyzed the data
collected from the Phase 1 study to identify strategies [15].

Phase 3 (In Progress): How do existing static analysis
tools support developers’ information needs and strate-
gies? During Phase 1 and Phase 2, we studied aspects of
developers’ behavior while interacting with a single security-
oriented static analysis tool. To answer RQ3 we shift focus
from the developer onto the tools, studying how characteristics
of existing analysis tools contribute to and detract from the
vulnerability resolution process.

We have conducted a heuristic walkthrough evaluation [16]
of three open source security tools and plan to extend the
evaluation to include commercial tools. As a result of our
heuristic walkthrough evaluation so far, we have identified
a list of 155 usability issues. We are also in the process of
conducting interviews with security experts about their use of
static analysis tools. Together, these studies will inform the
design of a new static analysis tool interface (Phase 4).

Phase 4 (Proposed): How can we design tools that
support more accurate and efficient resolution strategies?
To answer this fourth research question I will demonstrate,
through novel tool design, how we can apply our findings from
the previous three research questions. Particularly, I will create
a tool that explicitly supports more effective vulnerability res-
olution strategies. Figure 1 depicts a mockup of the tool I will
build. Its interface reifies effective strategies in hierarchically
structured checklists that can be executed by developers who
would otherwise lack strategic knowledge.

I hypothesize that such tool will be most beneficial for
novice developers, since security experts might have already
internalized effective strategies. Therefore, I plan to evalu-
ate this tool in an educational setting among students with
relatively little exposure to secure software development. To
measure accuracy and efficiency, we will record the number
of vulnerabilities participants resolve with the new tool and
how long they spend resolving each vulnerability and compare
their performance against a baseline. I will triangulate these
measures by also capturing usability metrics.

|BUQ Info jResqution Strotegy‘ Console\

V[Potential Path Traversal (Line 27 foojava)

Detected By: Find Security Bugs (FSB)
FSB Confidence/Severity: High/High
FSB Pattern: Path Traversal - Read File

» [Read the vulnerability info.
W[Check for a false positive.
If the user cannot control the filepath, then this instance is a false positive.
V¥ [] Determine where the filepath is defined.
Invoke Open Declaration on the filepath variable.
»[] Determine where this method can be called.
» [] Consider the possible fixes.

Fig. 1: A mockup of a tool that presents successful strategies.

V. ACKNOWLEDGMENTS

I owe thanks to my advisor, Dr. Emerson Murphy-Hill, my
dissertation committee, and the many collaborators who have
contributed to this work. This material is based upon work
supported by the National Science Foundation under grant
number 1318323.

REFERENCES

[1] “Coverity home page,” https://scan.coverity.com/, 2018.

[2] “Findbugs,” http://findbugs.sourceforge.net.

[3] R. S. Pressman, Software engineering: a practitioner’s approach. Pal-
grave Macmillan, 2005.

[4] M. Christakis and C. Bird, “What developers want and need from
program analysis: An empirical study,” in IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE 2016. New
York, NY, USA: ACM, 2016, pp. 332-343.

[5] B. Chess and G. McGraw, “Static analysis for security,” IEEE Security
and Privacy, vol. 2, no. 6, pp. 7679, Nov. 2004.

[6] B. Johnson, R. Pandita, J. Smith, D. Ford, S. Elder, E. Murphy-Hill,
S. Heckman, and C. Sadowski, “A cross-tool communication study
on program analysis tool notifications,” in International Symposium on
Foundations of Software Engineering. ACM, 2016, pp. 73-84.

[71 M. Green and M. Smith, “Developers are not the enemy!: The need for
usable security apis,” IEEE Security and Privacy, vol. 14, no. 5, pp.
40-46, 2016.

[8] Y. Acar, S. Fahl, and M. L. Mazurek, “You are not your developer, either:
A research agenda for usable security and privacy research beyond end
users,” in [EEE SecDev. 1EEE, 2016, pp. 3-8.

[9] S. K. Bhavnani and B. E. John, “The strategic use of complex computer

systems,” Human-Computer Interaction, vol. 15, no. 2, pp. 107-137,

Sep. 2000.

T. Muske and A. Serebrenik, “Survey of approaches for handling static

analysis alarms,” in IEEE International Working Conference on Source

Code Analysis and Manipulation (SCAM). 1EEE, 2016, pp. 157-166.

C. Sadowski, J. Van Gogh, C. Jaspan, E. Soderberg, and C. Winter, “Tri-

corder: Building a program analysis ecosystem,” in /EEE International

Conference on Software Engineering. 1EEE Press, 2015, pp. 598-608.

N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou, “Eval-

uating static analysis defect warnings on production software,” in ACM

Workshop on Program Analysis for Software Tools and Engineering.

ACM, 2007, pp. 1-8.

[13] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R. Lipford, “Ques-
tions developers ask while diagnosing potential security vulnerabilities
with static analysis,” in ACM International Symposium on Foundations
of Software Engineering, ser. ESEC/FSE 2015. ACM, 2015, pp. 248—
259.

[14] “Find security bugs,” http://h3xstream.github.io/find-sec-bugs/.

[15] J. Smith, B. Johnson, E. Murphy-Hill, B.-T. Chu, and H. Richter,

“How developers diagnose potential security vulnerabilities with a static

analysis tool,” IEEE Transactions on Software Engineering, 2018.

A. Sears, “Heuristic walkthroughs: Finding the problems without the

noise,” Human-Computer Interaction, vol. 9, no. 3, pp. 213-234, 1997.

[10]

(11]

(12]

(16]

268

