
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 1

How Developers Diagnose Potential Security
Vulnerabilities with a Static Analysis Tool

Justin Smith, Brittany Johnson, Emerson Murphy-Hill, Bill Chu, and Heather Richter Lipford

Abstract—While using security tools to resolve security defects, software developers must apply considerable effort. Success depends
on a developer’s ability to interact with tools, ask the right questions, and make strategic decisions. To build better security tools and
subsequently help developers resolve defects more accurately and efficiently, we studied the defect resolution process — from the
questions developers ask to their strategies for answering them. In this paper, we report on an exploratory study with novice and
experienced software developers. We equipped them with Find Security Bugs, a security-oriented static analysis tool, and observed
their interactions with security vulnerabilities in an open-source system that they had previously contributed to. We found that they
asked questions not only about security vulnerabilities, associated attacks, and fixes, but also questions about the software itself, the
social ecosystem that built the software, and related resources and tools. We describe the strategic successes and failures we
observed and how future tools can leverage our findings to encourage better strategies.

Index Terms—Software engineering, Human factors, Security, Software tools, Programming environments.

F

1 INTRODUCTION

S OFTWARE developers are a critical part of making software
secure, a particularly important task considering security

vulnerabilities are likely to cause incidents that affect company
profits as well as end users [7]. When software systems contain
security defects, developers are responsible for fixing them. In
fact, a recent survey by Christakis and Bird found that developers
cared more about security issues than other reliability issues [8].

Static analysis tools, like Find Security Bugs (FSB) [59] and
many others [55]–[57], [63], [65], promise to help developers
remove security defects early in the development life cycle. These
tools locate and report on potential software security vulnerabili-
ties, such as SQL injection and cross-site scripting even before the
code executes.

Unfortunately, these tools are confusing for developers to
use. Researchers cite several related reasons why these tools
do not help developers resolve defects, for instance, the tools:
“may not give enough information” [24]; produce “bad warning
messages” [8]; and “miscommunicate” with developers [23].

Our work investigates this tool understanding problem by
advancing our knowledge of how developers use a security-
focused static analysis tool to resolve security defects, including
developers’ information needs, defect resolution strategies, and
assumptions. This is the first study to investigate these facets of
security tool usage.

To that end, we conducted an exploratory think-aloud study
with ten developers who had contributed to iTrust [61], a security-
critical medical records software system written in Java. We

• J. Smith is with North Carolina State University, Raleigh, NC 27603. E-
mail: jssmit11@ncsu.edu

• B. Johnson is with University of Massachusetts Amherst, Amherst, MA
01003. E-mail: bjohnson@cs.umass.edu

• E. Murphy-Hill is with North Carolina State University, Raleigh, NC
27603. E-mail: emerson@csc.ncsu.edu

• B. Chu is with University of North Carolina at Charlotte, Charlotte, NC
28223. E-mail: billchu@uncc.edu

• H. Richter Lipford is with University of North Carolina at Charlotte,
Charlotte, NC 28223. E-mail: heater.lipford@uncc.edu

observed each developer as they assessed potential security vul-
nerabilities identified by FSB. We operationalized developers’
information needs by measuring questions — the verbal mani-
festations of information needs. Using a card sort methodology,
two authors sorted 559 questions into 17 categories. We report
the questions participants asked throughout our study, discuss the
strategies participants used to answer questions in each category,
and also describe the assumptions participants made.

In non-security domains, work that identifies information
needs has helped toolsmiths both evaluate the effectiveness of
existing tools [1], and improve the state of program analysis
tools [29], [45], [54]. Similarly, we expect that categorizing
developers’ information needs while using security-focused static
analysis tools will help researchers evaluate and toolsmiths im-
prove those tools.

An earlier version of this work appeared as a conference
paper [50]. The contribution we presented in that paper was a cat-
egorization of questions developers asked while resolving security
defects. While that contribution explains developers’ information
needs, it did not explain how developers answer those questions.
In this work, we explore how developers acquire the information
they need either actively (through strategies) or passively (through
assumptions).

More specifically, this paper elaborates on the earlier work
with the following two additional contributions:

• A catalog of developers defect resolution strategies, or-
ganized by the information need each strategy addresses.
For example, to understand how to implement a fix,
participants strategically surveyed multiple sources of in-
formation, including the web, the tool’s notification, and
other modules in the code.

• A description of the common assumptions that under-
mined those strategies. For example, during some tasks,
participants incorrectly assumed input validation had been
handled securely.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 2

2 METHODOLOGY

We conducted an exploratory study with ten software developers.
In our analysis, we extracted and categorized the questions devel-
opers asked during each study session. Section 2.1 outlines the
research questions we sought to answer. Section 2.2 details how
the study was designed and Sections 2.3, 2.4, and 2.5 describe how
we performed our three phases of data analysis. Study materials
can be found online [58] and in the appendices.

2.1 Research Question

We answer the following research questions:

• RQ1: What information do developers need while using
static analysis tools to diagnose potential security vulner-
abilities?

• RQ2: What strategies do developers use to acquire the
information they need?

• RQ3: What assumptions do developers make while exe-
cuting these strategies?

We measured developers’ information needs (RQ1) by examining
the questions they asked. The questions that we identified are
all available online [58] and in the appendices. We list several
exemplary questions throughout Section 3 alongside the strategies
developers used (RQ2) and assumptions developers made (RQ3)
while answering those questions. Where possible, we also describe
how participants’ strategies and assumptions led to information
seeking successes or failures.

2.2 Study Design

To ensure all participants were familiar with the study environment
and Find Security Bugs (FSB), each in-person session started
with a five-minute briefing section. The briefing section included
a demonstration of FSB’s features and time for questions about
the development environment’s configuration. During the briefing
section, we informed participants of the importance of security
to the application and that the software may contain security
vulnerabilities.

Additionally, we asked participants to use a think-aloud pro-
tocol, which encourages participants to verbalize their thought
process as they complete a task or activity [40]. Specifically, they
were asked to: “Say any questions or thoughts that cross your
mind regardless of how relevant you think they are.” We recorded
both audio and the screen as study artifacts for data analysis.

Following the briefing period, participants progressed through
encounters with four vulnerabilities. Figure 1 depicts the configu-
ration of the Eclipse for Java integrated development environment
(IDE) for one of these encounters. All participants consented to
participate in our study, which had institutional review board
approval, and to have their session recorded using screen and audio
capture software. Finally, each session concluded with several
demographic and open-ended discussion questions.

2.2.1 Materials
Participants used Eclipse to explore vulnerabilities in iTrust, an
open source Java medical records web application that ensures the
privacy and security of patient records according to the HIPAA
statute [60]. The code base comprises over 50,000 lines of code,
including the test packages. Participants were equipped with FSB,
an extended version of FindBugs.

TABLE 1
Participant Demographics

Participant Job Title Vulnerability Experience
Familiarity Years

P1* Student G### 4.5
P2* Test Engineer ## 8
P3 Development Tester ### 6
P4* Software Developer ### 6
P5* Student # 10
P6 Student #### 4
P7 Software Developer # 4.5
P8 Student ## 7
P9 Software Consultant ## 5
P10 Student ## 8

We chose FSB because it detects security defects and compares
to other program analysis tools, such as those listed by NIST, [55]
OWASP, [63] and WASC [65]. Some of the listed tools may in-
clude more or less advanced bug detection features. However, FSB
is representative of static analysis security tools with respect to its
user interface, specifically in how it communicates with its users.
FSB provides visual code annotations and textual notifications that
contain vulnerability-specific information. It summarizes all the
vulnerabilities it detects in a project and allows users to prioritize
potential vulnerabilities based on several metrics such as bug type
or severity.

2.2.2 Participants

For our study, we recruited ten software developers, five students
and five professionals. We recruited both students and profes-
sionals to diversify the sample; our analysis does not otherwise
discriminate between these two groups. Table 1 gives additional
demographic information on each of the ten participants. Asterisks
denote previous use of security-oriented tools. Participants ranged
in programming experience from 4 to 10 years, averaging 6.3
years. Participants also self-reported their familiarity with security
vulnerabilities on a 5 point Likert scale, with a median of 3.
Although we report on experiential and demographic information,
the focus of this work is to identify questions that span experience
levels. In the remainder of this paper, we will refer to participants
by the abbreviations found in the participant column of the table.

We faced the potential confound of measuring participants’
questions about a new code base rather than measuring their
questions about vulnerabilities. To mitigate this confound, we
required participants to be familiar with iTrust; all participants
either served as teaching assistants for, or completed a semester-
long software engineering course that focused on developing
iTrust. This requirement also ensured that participants had prior
experience using static analysis tools. All participants had prior
experience with FindBugs, the tool that FSB extends, which
facilitated the introduction of FSB.

However, this requirement restricted the size of our potential
participant population. Accordingly, we used a nonprobabilistic,
purposive sampling approach [19], which typically yields fewer
participants, but gives deeper insights into the observed phenom-
ena. To identify eligible participants, we recruited via personal
contacts, class rosters, and asked participants at the end of the
study to recommend other qualified participants. Although our
study involved only ten participants, we reached saturation [14]
rather quickly; no new question categories were introduced after
the fourth participant.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 3

A

B

C

Fig. 1. Study environment, including: short vulnerability description in the bug explorer (A); vulnerable code (B); long vulnerability description (C).

2.2.3 Tasks

First we conducted a preliminary pilot study (n = 4), in which
participants spent approximately 10 to 15 minutes with each task
and showed signs of fatigue after about an hour. To reduce the
effects of fatigue, we asked each participant to assess just four
vulnerabilities. We do not report on data collected from this pilot
study.

The tasks we chose encompass a subset of the vulnerability
remediation activities in the wild. In a talk given at an RSA
conference, Dan Cornell describes the activities involved in vul-
nerability remediation tasks in industry [9]. He illustrates how the
tasks performed in our study compare to tasks outside the lab. By
his account, vulnerability remediation includes activities such as
planning, setting up development environments, performing func-
tional testing, and deployment. Because our study focuses on how
developers diagnose vulnerabilities, we do not ask participants to
perform these auxiliary tasks.

When selecting tasks, we ran FSB on iTrust and identified
118 potential security vulnerabilities across three topics. To in-
crease the diversity of responses, we selected tasks from mutually
exclusive topics, as categorized by FSB. For the fourth task, we
added a SQL injection vulnerability to iTrust by making minimal
alterations to one of the database access objects. Our alterations
preserved the functionality of the original code and were based on
examples of SQL injection found on OWASP [64] and in open-
source projects. We chose to add a SQL injection vulnerability,
because among all security vulnerabilities, OWASP ranks injection
vulnerabilities as the most critical web application security risk.

For each task, participants were asked to assess code that
“may contain security vulnerabilities” and “justify any proposed
code changes.” Table 2 summarizes each of the four tasks and

the remainder of this section provides more detail about each
task, including excerpts from the lines FSB initially flagged. All
participants progressed through the tasks in a fixed order. The
tasks were not otherwise related to each other, aside from the
fact that they were all located in iTrust. Although we are not
specifically studying task completion time, we report the mean
completion time for each task.

Task 1
The method associated with Task 1, parseSQLFile, opens a
file, reads its contents, and executes the contents of the file as SQL
queries against the database. Before opening the file, the method
does not escape the filepath, potentially allowing arbitrary SQL
files to be executed. However, the method is only ever executed
as a utility from within the unit test framework. Therefore, the
method is only ever passed a predefined set of filepaths that cannot
be maliciously manipulated.

To complete this task, participants needed to recognize that
parseSQLFile was only used in tests and that the filepaths
were essentially hard-coded, which could be accomplished by
examining all of parseSQLFile’s call locations. The mean
completion time for this task was 14 minutes and 49 seconds.

private List<String> parseSQLFile(String path)
{
FileReader r =
new FileReader(new File(path));

...
}

Task 2
The method associated with Task 2 is used to generate random

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 4

passwords when a new application user is created. FSB warns
Random should not be used in secure contexts (such as password
generation) and instead suggests using SecureRandom, a more
secure alternative. Using SecureRandom does impose a slight
performance trade-off, however participants were not explicitly
instructed that performance was a concern. Correct fixes for this
vulnerability replace Random with SecureRandom, ensure the
number generator is securely seeded, and appropriate API calls
are used. The mean completion time for this task was 8 minutes
and 52 seconds.

public class RandomPassword
{
private static final Random r = new Random();
...

}

Task 3
The method associated with Task 3 reads several improperly
validated string values from a form. Entering an apostrophe (’)
into any of the fields modifies the underlying Java server page
(JSP) and permits form manipulation. Additional modification of
the form fields can produce more unexpected behavior. The values
entered into the form are eventually redisplayed on the web page
exposing the application to a cross site scripting attack. Correct
fixes for this task either modify the JSP to escape output or modify
the validation methods to reject apostrophes. Either of these fixes
require participants to navigate away from the file containing the
FSB warning. The mean completion time for this task was 13
minutes and 19 seconds.

protected void doPost(HttpServletRequest req,
HttpServletResponse response)

{
currentMID = req.getParameter("currentMID");
recPhone = req.getParameter("recPhone");
recEmail = req.getParameter("recEmail");
...

}

Task 4
In the method associated with Task 4, a SQL statement object
is created using string interpolation, which is potentially
vulnerable to SQL injection. FSB recommends using
PreparedStatements instead. In this case, although the
inputs had likely already been sanitized elsewhere in the
application, the cost of switching to PreparedStatements is
negligible. Furthermore, the standard as implemented by other
database access objects (DAOs) in iTrust is to use the more secure
PreparedStatement class. Therefore, a correct fix would be
to convert the method to use PreparedStatements. The mean
completion time for this task was 8 minutes.

public void addApptRequest(ApptBean bean)
{
Statement stmt;
...
String query = String.format(
"INSERT INTO appointmentrequests
(appt_type, patient_id, doctor_id,
sched_date, comment, pending, accepted)
VALUES (’%s’, %d, %d, ’%s’, ’%s’, %d, %d);",

bean.getApptType(),
bean.getPatient(),
bean.getHcp(),
bean.getDate(),
bean.getComment(),
...
stmt.executeUpdate(query);
...

}

2.3 Data Analysis — Questions

To analyze the data, we first transcribed all the audio-video files
using oTranscribe [62]. Each transcript, along with the associated
recording, was analyzed by two of the authors for questions. The
two question sets for each session were then iteratively compared
against each other until the authors reached agreement on the
question sets. In the remainder of this section, we will detail
the question extraction process and question sorting processes,
including the criteria used to determine which statements qualified
as questions.

2.3.1 Question Criteria

Drawing from previous work on utterance interpretation [34], we
developed five criteria to assist in the uniform classification of
participant statements. A statement was coded as a question only
if it met one of the following criteria:

• The participant explicitly asks a question.
Ex: Why aren’t they using PreparedStatements?

• The participant makes a statement and explores the
validity of that statement.
Ex: It doesn’t seem to have shown what I was looking for.
Oh, wait! It’s right above it...

• The participant uses key words such as, “I assume,” “I
guess,” or “I don’t know.”
Ex: I don’t know that it’s a problem yet.

• The participant clearly expresses uncertainty over a
statement.
Ex: Well, it’s private to this object, right?

• The participant clearly expresses an information need
by describing plans to acquire information.
Ex: I would figure out where it is being called.

2.3.2 Question Extraction

To make sure our extraction was exhaustive, the first two authors
independently coded each transcript using the criteria outlined in
the previous section. When we identified a statement that satisfied
one or more of the above criteria, we marked the transcript,
highlighted the participant’s original statement, and clarified the
question being asked. Question clarification typically entailed re-
wording the question to best reflect the information the participant
was trying to acquire. From the ten sessions, the first coder
extracted 421 question statements; the other coder extracted 389.

It was sometimes difficult to determine what statements should
be extracted as questions; the criteria helped ensure both authors
only highlighted the statements that reflected actual questions.
Figure 2 depicts a section of the questions extracted by both
authors from P8 prior to review.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 5

TABLE 2
Four vulnerability exploration tasks

Vulnerability Short Description Severity Rank
Potential Path Traversal An instance of java.io.File is created to read a file. “Scary”
Predictable Random Use of java.util.Random is predictable. “Scary”
Servlet Parameter The method getParameter returns a String value that is controlled by the client. “Troubling”
SQL Injection [Method name] passes a non-constant String to an execute method on an SQL statement. “Of Concern”

P: 18:11 So I want know where this is being used. Is it being passed to an SQL

query or one of these kinds of things? Okay, so now it's creating a form that it's

going to ... I forget what forms are used for... I'm clicking on this to select all the

instances of form so I can figure out where down here it's being used. Now it's in

addRecordsRelease, so I think that is going to become a database call at some

point.

Comment [J1]: Where are these variables
being used?
Comment [BJ2]: Where is this value/variable
being used?
Comment [J3]: Is this variable being passed to
a SQL query or anything else the bug warns me
about?
Comment [BJ4]: What are forms used for?
Comment [J5]: Where is the form used later in
this method?
Comment [BJ6]: Is it going to become a
database call at some point?

Fig. 2. Question merging process

2.3.3 Question Review

To remove duplicates and ensure the validity of all the questions,
each transcript was reviewed jointly by the two authors who
initially coded it. During this second pass, the two reviewers
examined each question statement, discussing its justification
based on the previously stated criteria. The two reviewers merged
duplicate questions, favoring the wording that was most strongly
grounded in the study artifacts. Including questions that were only
identified by one reviewer, this process resulted in a total of 559
questions.

Each question that was only identified by one author required
verification. If the other author did not agree that such a question
met at least one of the criteria, the question was removed from the
question set and counted as a disagreement. The reviewers were
said to agree when they merged a duplicate or verified a question.
Depending on the participant, inter-reviewer agreement ranged
from 91% to 100%. Across all participants, agreement averaged
to 95%. The agreement scores suggest that the two reviewers
consistently held similar interpretations of the question criteria.

It is also important to note that participants’ questions related
to several topics in addition to security. We discuss the questions
that are most closely connected to security in Sections 3.2.1, 3.3.6,
and 3.5.3. Although our primary focus is security, we are also
interested in the other questions that participants posed, as those
questions often have security implications and require special
considerations in the context of security. For example, researchers
have observed that developers ask questions about data flow, like
What is the original source of this data, even outside security [32].
A developer concerned with security might need to consider that
attackers are one potential source of data. Data originating from
an attacker could be crafted to disguise its malicious nature or to
do more damage to the system. In such a context, the implications
are somewhat unique to security, because, for example, potentially
insecure data sources often require special handling to prevent
attacks.

2.3.4 Question Sorting

To organize our questions and facilitate discussion, we performed
an open card sort [22]. Card sorting is typically used to help struc-
ture data by grouping related information into categories. In an
open sort, the sorting process begins with no notion of predefined
categories. Rather, sorters derive categories from emergent themes
in the cards.

We performed our card sort in three distinct stages: cluster-
ing, categorization, and validation. In the first stage, we formed
question clusters by grouping questions that identified the same
information needs. In this phase we focused on rephrasing similar
questions and grouping duplicates. For example, P1 asked, Where
can I find information related to this vulnerability? P7 asked,
Where can I find an example of using PreparedStatements?
and P2 asked, Where can I get more information on path traversal?
Of these questions, we created a question cluster labeled Where
can I get more information? At this stage, we discarded five
unclear or non pertinent questions and organized the remaining
554 into 154 unique question clusters.

In the second stage, we identified emergent themes and
grouped the clusters into categories based on the themes. For
example, we placed the question Where can I get more infor-
mation? into a category called Resources/Documentation, along
with questions like Is this a reliable/trusted resource? and What
information is in the documentation? Table 3 contains the 17
categories along with the number of distinct clusters each contains.

To validate the categories that we identified, we asked two
independent researchers to sort the question clusters into our
categories. Rather than sort the entire set of questions, we ran-
domly selected 43 questions for each researcher to sort. The
first agreed with our categorization with a Cohen’s Kappa of
κ = .63. Between the first and second researcher we reworded
and clarified some ambiguous questions. The second researcher
exhibited greater agreement (κ = .70). These values are within
the .60− .80 range, indicating substantial agreement [30].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 6

Fig. 3. Example strategy tree for a null dereference defect.

2.4 Data Analysis — Strategies
2.4.1 Strategy Definitions
We define a defect resolution strategy as all the actions a developer
takes to validate and resolve a defect. Such actions include
invoking tools, modifying the source code, and searching the web,
among many other things. We adapt Bhavani and John’s related
definition of a strategy, “a method of task decomposition that is
non-obligatory and goal directed,” to determine which actions to
include in a strategy [4].

Consider the following example which illustrates this notion
of non-obligatory actions and how we use it as a stopping criteria
for our strategy analysis. Say a developer’s goal is to get more
information about the code. One strategy would be to read the
code itself, another would be to read the documentation. These
are both considered strategies because they help the developer
achieve a goal, and the developer is not obligated to choose either
one of these approaches. Now consider a negative example where
a developer’s goal is to read the code. We wouldn’t consider
the developer’s act of fixating his gaze on the screen a strategy,
because it is obligatory (assuming the developer does not also use
a screen reader or other similar technology).

There are many ways to represent strategies. Our screen and
audio recordings represent strategies with high fidelity because
they contain everything that happened during the study. However,
this format is difficult to work with and does not summarize
the essence of a strategy. Another format we considered was to
synthesize each participant’s strategies into unstructured textual
summaries. This format has the advantage over raw recordings of
being easy to search and consume, but it does not represent the
relationships between strategies.

Ultimately, we created a new notation for representing strate-
gies, called strategy trees. Strategy trees are based on the idea of
attack trees [37]. Attack trees encode the actions an attacker could
take to exploit a system, including the idea that he may combine
multiple actions to achieve a higher-level goal. Much like attack
trees, our representation organizes actions hierarchically. Whereas
attack trees describe an attacker’s actions, we use strategy trees
to represent the hierarchical set of actions a developer takes to
resolve a security defect. Figure 3 depicts an example strategy
tree.

2.4.2 Strategy Extraction
To answer RQ2 the first author performed two additional passes
through the transcripts and recordings. This analysis took place
after the questions analysis had been completed and was con-
ducted separately. In the first pass, we considered participants’

screen recordings and think-aloud verbalizations to identify their
defect resolution strategy for each task. We watched the videos,
pausing approximately every minute to take notes. Using the
definitions of strategies and stopping criteria described in the
previous section (Section 2.4.1) we decided what to include in the
strategy trees. This process resulted in 40 strategy trees, which we
finally referenced against each other to ensure the use of consistent
terminology.

During the second pass we added annotations to each strategy
tree. As depicted in Figure 3 (lines prefixed with +/−), we
annotated the trees whenever an action led to a success or a failure.
To best understand which strategies contributed to success, we
measured success/failure as granularly as possible. Rather than
annotating the entire tree as successful or not, we annotated the
sub-strategies that compose the tree. Participants could succeed
with some strategies while failing with others. For example,
participants could succeed in locating relevant information, but fail
to interpret it correctly. Some sub-strategies were not observably
successful/failure-inducing and were, therefore, not annotated.

The following criteria, though not complete, guided us when
in determining when strategies were successful or unsuccessful.
Whenever we observed an outcome that contributed to a partic-
ipant’s understanding of the problem or demonstrated progress
toward a solution, it was marked as a success. Whenever we
observed the participant making a verifiably incorrect statement,
abandoning a strategy without achieving the desired result, or
overlooking information they sought, it was marked as a failure.

2.4.3 Strategy Review
A second researcher who had not been involved in the original
strategy tree extraction, the second author, assessed the com-
pleteness and validity of the strategy tree analysis. Rather than
duplicate the strategy tree extraction process, the researcher re-
viewed the existing trees. Extracting the strategy trees from scratch
consumed a considerable amount of time, approximately 50 hours.
Roughly, the process involved watching each of the 40 task videos,
pausing every minute to take notes, and iteratively cross-checking
all the trees for consistent terminology. In comparison, reviewing
the existing trees took 10 hours.

To assess the completeness of the strategy trees, the reviewer
was instructed to, “consider whether each strategy tree is missing
any important elements.” The reviewer commented on 3 of the
40 tasks (7.5%). These discrepancies were resolved after they
were discussed by the first and second authors. Relatively few
discrepancies between evaluators suggests the trees capture most
strategies participants executed.

To validate the extracted strategy trees, the second researcher
reviewed each tree while watching the screen/audio recording
corresponding to that tree. The reviewer was instructed to confirm
the presence of each strategy tree element in each video and
placed a check mark next to tree elements as they were observed.
This process resulted in the reviewer checking off all of the
tree elements, which suggests our strategy trees accurately reflect
actions that actually occurred.

2.5 Data Analysis — Assumptions
Like strategies, assumptions can satisfy developers information
needs. Unlike strategies, assumptions do not comprise any actions
and instead represent an accepted truth without proof. To draw
a programming analogy, one can think of assumptions as null
strategies — satisfying an information need without investigation.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 7

To answer RQ3, we identified participants’ assumptions and
analyzed each assumption to determine if it was correct. For the
purposes of our study, assumptions are defined rather narrowly
so that they can be identified unambiguously. Specifically, we
only consider the assumptions participants explicitly state using
the word “assume” or related words. This choice enables us
to accurately identify assumptions, but underapproximates the
assumptions made during our study.

Participants likely made many assumptions implicitly that we
did not capture. Because such implicit assumptions are perva-
sive [11], it would be intractable to identify them all. For example,
participants may have implicitly assumed the Eclipse environment
was configured correctly and all the relevant source files were
accessible. Instead of speculating about all of these assumptions,
we only consider the assumptions participants explicitly stated.

To identify the explicit assumptions participants made, we
searched the transcripts for keywords. To derive the search set, we
started with the following base words: assume, presume, reckon,
believe, and guess. Next, we applied lemmatisation to identify all
the inflected forms of these words, such as hypothesize, speculate,
suppose, etc. Finally, we searched the transcripts for the stems of
all the words identified by lemmatisation.

This search process returned some false-positives. For exam-
ple, one participant referred to the interviewer’s assumptions rather
than making an assumption of his own asking, “Am I assumed
to have some prior knowledge?” To filter only the assumptions
participants made about the task or the code, the first author
inspected each search result.

After determining the result was an assumption, we evaluated
its correctness. For example, one participant (P4) assumed an
external library was implemented securely. We determined this
assumption was incorrect by locating a vulnerability in the library
using the common vulnerability and exposures database.1 We
discuss this particular assumption in Section 3.3.4 and the rest
of the assumptions throughout Section 3.

3 RESULTS

3.1 Interpreting the Results

In the next four sections, we discuss our study’s results using the
categories we described in Section 2.3. Due to their large number,
we grouped the categories to organize and facilitate discussion
about our findings. Table 3 provides an overview of these group-
ings. The table also describes which tasks each question category
occurred in (e.g., we observed questions from the Understanding
Concepts category in all four tasks).

For each category, we selected several questions to discuss.
A full categorization of questions can be found online and in the
appendix along with the full descriptions of participants strategies
and assumptions [58]. The numbers next to the category titles
denote the number of participants that asked questions in that
category and the total number of questions in that category —
in parenthesis and brackets respectively. Similarly, the number in
parenthesis next to each question marks the number of participants
that asked that question.

When discussing the questions participants asked for each cat-
egory, we will use phrases such as “X participants asked Y.” Note
that this work is exploratory and qualitative in nature. Though
we present information about the number of participants who ask

1. cve.mitre.org

specific questions, the reader should not infer any quantitative
generalizations.

The structure of most results categories consists of five parts:
an overview of the category, several of the questions we selected,
a discussion of those questions (RQ1), a discussion relating the
category to questions from previous studies, and a discussion of
how participants answer the questions in that category (RQ2 and
RQ3). Some sections contain less discussion than others either
because participants’ intentions in asking questions were unclear,
or participants asked questions without following up or attempting
to answer them at all.

To answer RQ2, we describe developers’ defect resolution
strategies. These strategies for answering individual questions
often overlap, especially within a given category. Accordingly, to
present a coherent discussion and avoid duplication, we discuss
strategies for each category rather than for each question.

In this section we also describe participants’ correct and
incorrect assumptions (RQ3) as well as elaborate on how those
assumptions contributed to defect resolution. While performing
their tasks, participants made different types of assumptions.
Overall, we observed 73 total assumptions — 27 incorrect and 46
correct. We identified assumptions across all participants, except
for P3, who may have made assumptions without stating them
explicitly. Additionally, participants stated at least one assumption
during each task.

3.2 Vulnerabilities, Attacks, and Fixes

3.2.1 Preventing and Understanding Attacks (10){11}
Unlike other types of code defects that may cause code to function
unexpectedly or incorrectly, security vulnerabilities expose the
code to potential attacks. For example, the Servlet Parameter
vulnerability (Table 2) introduced the possibility of SQL injection,
path traversal, command injection, and cross-site scripting attacks.

Is this a real vulnerability? (7)
What are the possible attacks that could occur? (5)
Why is this a vulnerability? (3)
How can I prevent this attack? (3)
How can I replicate an attack to exploit this vulnerability? (2)
What is the problem (potential attack)? (2)

Participants sought information about the types of attacks that
could occur in a given context. To that end, five participants asked,
What are the possible attacks that could occur? For example,
within the first minute of his analysis P2 read the notification
about the Path Traversal vulnerability and stated, “I guess I’m
thinking about different types of attacks.” Before reasoning about
how a specific attack could be executed, he wanted to determine
which attacks were relevant to the notification.

Participants also sought information about specific attacks
from the notification, asking how particular attacks could exploit a
given vulnerability. Participants hypothesized about specific attack
vectors, how to execute those attacks, and how to prevent those
attacks now and in the future. Seven participants, concerned about
false positives, asked the question, Is this a real vulnerability?
To answer that question, participants searched for hints that an
attacker could successfully execute a given attack in a specific
context. For example, P10 determined that the Predictable Random
vulnerability was “real” because an attacker could deduce the

cve.mitre.org

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 8

TABLE 3
Organizational Groups and Emergent Categories

Group Category Tasks Clusters Location in Paper

Vulnerabilities, Attacks, and Fixes

Preventing and Understanding Potential Attacks T1 – T4 11 Section 3.2.1
Understanding Approaches and Fixes T1 – T4 10 Section 3.2.2
Assessing the Application of the Fix T1 – T4 9 Section 3.2.3
Relationship Between Vulnerabilities T2 – T4 3 Section 3.2.4

Code and the Application

Locating Information T1 – T4 11 Section 3.3.1
Control Flow and Call Information T1 – T4 13 Section 3.3.2
Data Storage and Flow T1, T3, T4 11 Section 3.3.3
Code Background and Functionality T1 – T4 17 Section 3.3.4
Application Context/Usage T1 – T4 9 Section 3.3.5
End-User Interaction T1, T3, T4 3 Section 3.3.6

Individuals
Developer Planning and Self-Reflection T1 – T4 14 Section 3.4.1
Understanding Concepts T1 – T4 6 Section 3.4.2
Confirming Expectations T1 – T4 1 Section 3.4.3

Problem Solving Support

Resources and Documentation T1 – T4 10 Section 3.5.1
Understanding and Interacting with Tools T1 – T4 9 Section 3.5.2
Vulnerability Severity and Rank T1 – T4 4 Section 3.5.3
Notification Text T1 – T4 3 Section 3.5.4
Uncategorized T1 – T4 10

random seed and use that information to determine other users’
passwords.

Previous studies have identified related information needs
pertaining to preventing and understanding bugs, problems, de-
fects, and failures. For example, several questions from the prior
literature appear similar to the questions we identified: “Is this a
problem?” [27]; “What does the failure look like?” [27]; “How
do I debug in this environment?” [32]. However, the difference in
terminology between these prior findings and ours (problems/fail-
ures/bugs vs. attacks) reflects the novelty of our contribution. As
we discussed in Section 2.3, attacks require special consideration
because they originate from a malicious agents.

Strategies and Assumptions: Participants used various strate-
gies to answer questions about attacks. When available, partici-
pants read FSB’s vulnerability information. When FSB did not
provide sufficient information, participants turned to the web,
searching on sites like Google and StackOverflow.

These strategies for getting information about different types
of attacks were prone to two types of failures. First, because web
search engines were not fully aware of participants’ programming
contexts, they returned information about a superset of the relevant
attacks. For example, P2 searched for attacks that exploit unvali-
dated input vulnerabilities. Searching the web returns results about
cross site scripting attacks, injection attacks, and buffer overflow
attacks. However, due to Java’s automatic array bounds checking,
buffer overflow attacks are not feasible in the vast majority of
Java programs, including iTrust. Devoting more effort to buffer
overflow attacks would have distracted P2 from the other more
relevant attacks.

Secondly, by executing these strategies some participants er-
roneously considered only a subset of the possible attacks. This
failure was especially evident for the Servlet Parameter vulnera-
bility, where a cross site scripting attack was feasible, but a SQL
injection attack was not. Some participants correctly determined
the data was sanitized before reaching the database, dismissed
SQL injection, and prematurely concluded the vulnerability was a
false positive. By failing to consider cross site scripting attacks,
participants overlooked the program path that exposed a true
attack.

3.2.2 Understanding Approaches and Fixes (8){10}
When resolving security vulnerabilities, participants explored
alternative ways to achieve the same functionality more securely.
For example, while evaluating the potential SQL Injection
vulnerability, participants found resources that suggested using
the PreparedStatement class instead of Java Statement
class.

Does the alternative function the same as what I’m currently
using? (6)
What are the alternatives for fixing this? (4)
Are there other considerations to make when using the
alternative(s)? (3)
How does my code compare to the alternative code in the example
I found? (2)
Why should I use this alternative method/approach to fix the
vulnerability? (2)

Some notifications, including those for the SQL Injection and
Predictable Random vulnerabilities, explicitly offered fix sugges-
tions. In other cases, participants turned to a variety of sources,
such as StackOverflow, official documentation, and personal blogs
for alternative approaches.

Three participants specifically cited StackOverflow as a source
for alternative approaches and fixes. P7 preferred StackOverflow
as a resource, because it included real-world examples of broken
code and elaborated on why the example was broken. Despite the
useful information some participants found, often the candidate
alternative did not readily provide meta-information about the
process of applying it to the code. For example, P9 found a
suggestion on StackOverflow that he thought might work, but it
was not clear if it could be applied to the code in iTrust.

While attempting to assess the Servlet Parameter vulnerability,
P8 decided to explore some resources on the web and came
across a resource that appeared to be affiliated with OWASP [64].
Because he recognized OWASP as “the authority on security,” he
clicked the link and used it to make his final decision regarding
the vulnerability. It seemed important to P8 that recommended
approaches came from trustworthy sources.

Previous studies have similarly observed that developers ask
questions like those in this category. For instance, Ko and col-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 9

leagues report developers ask, “What data structures or functions
can be used to implement this behavior?” while considering the
‘space of existing reusable code’ [27]. Additionally, it has simi-
larly been reported that developers ask, “Which function or object
should I pick?” [32] and need information about alternative up-
stream frameworks (“Comparison with similar upstreams”) [20].
These previous findings pertain to general programming tasks or
implementations of new behavior, which is the primary difference
compared with our results. Our results reveal the salience of these
questions to developers working on defective code.

Strategies and Assumptions: Participants’ strategies for ac-
quiring information about fixes centered around three information
sources — FSB, the web, and other modules in the code. Even
when FSB informed participants about a specific alternative,
participants sought supplementary information from the other two
external sources.

For example, during Task 4, FSB suggested using
PreparedStatements. In search of information about
PreparedStatements’ syntax, participants navigated to the
project’s related code modules they suspected would contain
PreparedStatements. Participants largely found examples
from these related modules helpful, because they were easy to
translate back to the original method.

For Task 2, participants similarly sought examples of
SecureRandom, but were ultimately less successful. Unaware
that the project contained examples of SecureRandom, in this
case, participants turned to online resources. Although some par-
ticipants understood the relevant online API documentation, others
struggled to compare the online documentation to the original
method.

3.2.3 Assessing the Application of the Fix (9){9}
Once participants had identified an approach for fixing a security
vulnerability (Section 3.2.2), they asked questions about applying
the fix to the code. For example, while considering the use of
SecureRandom to resolve the Predictable Random vulnerability,
participants questioned the applicability of the fix and the
consequences of making the change. The questions in this
category differ from those in Understanding Approaches and
Fixes (Section 3.2.2). These questions focus on the process of
applying and reasoning about a given fix, rather than identifying
and understanding possible fixes.

Will the notification go away when I apply this fix? (5)
How do I use this fix in my code? (4)
How do I fix this vulnerability? (4)
How hard is it to apply a fix to this code? (3)
Is there a quick fix for automatically applying a fix? (2)
Will the code work the same after I apply the fix? (2)
What other changes do I need to make to apply this fix? (2)

When searching for approaches to resolve vulnerabilities,
participants gravitated toward fix suggestions provided by the
notification. As noted above, the notifications associated with the
Predictable Random vulnerability and the SQL Injection vulner-
ability both provided fix suggestions. All participants proposed
solutions that involved applying one or both of these suggestions.
Specifically, P2 commented that it would be nice if all the
notifications contained fix suggestions.

However, unless prompted, none of the participants com-
mented on the disadvantages of using fix suggestions. While ex-

ploring the Predictable Random vulnerability, many participants,
including P1, P2, and P6, decided to use SecureRandom without
considering any alternative solutions, even though the use of
that suggested fix reduces performance. It seems that providing
suggestions without discussing the associated trade-offs appeared
to reduce participants’ willingness to think broadly about other
possible solutions.

Based on the identification of these questions, assessing the
application of fixes is important in a security context, but perhaps
not unique to security. Prior studies have identified some questions
that are similar to those asked by our participants: “Did I make
any mistakes in my new code?” [27]; “What are the implications
of this change for API clients, security, concurrency, performance,
platforms, tests, or obfuscation?” [32]; “Will this completely solve
the problem or provide the enhancement?” [47].

Strategies and Assumptions: Although participants were not
asked to make any modifications to the code, they did describe
their strategies for applying and assessing fixes. Many participants
looked for ways to apply fixes automatically. However, none of
the FSB notifications included quick fixes. Still, some participants
unsuccessfully attempted to apply quick fixes by clicking on
various interface elements.

To assess whether the fix had been applied correctly, par-
ticipants commonly described one particular heuristic. P1, for
instance, would make the change and simply “see if the bug
[icon] goes away.” This strategy typically ensures the original
vulnerability gets fixed, but fails when the fix introduces new
defects.

3.2.4 Relationship Between Vulnerabilities (4){3}
Some participants asked questions about the connections between
co-occurring vulnerabilities and whether similar vulnerabilities
exist elsewhere in the code. For example, when participants
reached the third and fourth vulnerabilities, they began speculating
about the similarities between the vulnerabilities they inspected.

Are all the vulnerabilities related in my code? (3)
Does this other piece code have the same vulnerability as the
code I’m working with? (1)

Previous studies report questions about relationships between
code elements, but not defects [12], [32]. For instance, “Which
other code that I worked on uses this code pattern / utility
function?” [12]. Ko and colleagues briefly discuss the relationships
between defects as it relates to the question: “Is this a legitimate
problem?” Sometimes developers answered this question by de-
termining if the same problem had been reported by others as a
duplicate [27].

Strategies and Assumptions: Participants asked a few pass-
ing questions about the relationships between vulnerabilities, but
were not explicitly asked to relate the vulnerabilities to each other
across tasks. As a result, we did not observe the emergence of any
predominant strategies or assumptions in this category.

3.3 Code and the Application
3.3.1 Locating Information (10){11}
Participants asked questions about locating information in
their coding environments. In the process of investigating
vulnerabilities, participants searched for information across
multiple classes and files. Unlike Sections 3.3.2 and 3.3.3,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 10

questions in this category more generally refer to the process of
locating information, not just about locating calling information
or data flow information.

Where is this used in the code? (10)
Where are other similar pieces of code? (4)
Where is this method defined? (1)

All ten participants wanted to locate where defective code
and tainted values were in the system. Most of these questions
occurred in the context of assessing the Predictable Random
vulnerability. Specifically, participants wondered where the po-
tentially insecure random number generator was being used and
whether it was employed to generate sensitive data like passwords.

In other cases, while fixing one method, four participants
wanted to find other methods that implemented similar function-
ality. They hypothesized that other code modules implemented
the same functionality using more secure patterns. For example,
while assessing the SQL Injection vulnerability, P2 and P5 both
wanted to find other modules that created SQL statements. All
participants completed this task manually by scrolling through the
package explorer and searching for code using their knowledge of
the application.

Asking ‘Where’ questions and locating information has been
broadly discussed in the prior literature, though the types of
information sought depend on the study. Some developers asked
questions about locating recent changes made by teammates such
as “Where has code been changing [this week]?” and “Where have
changes been made related to you?” [12]. Others ask questions
about the functionality of the code, more resembling the questions
we identified: “Where is this functionality implemented?” [32];
“Where is this defined?” [32]; “Where is this variable or data
structure being accessed?” [47]; “Where are instances of this class
created?” [47]. None of Ko and colleagues’ questions refer to
locating information, but they report, as we will discuss subse-
quently, that participants used search tools to find information.
[27].

Strategies and Assumptions: For the majority of partici-
pants, scrolling through the source file was a key component
of their strategies for locating information. As Robillard and
colleagues observed, such unstructured navigation may signal
ineffectiveness [44]. Eclipse provides many tools designed to
help users locate specific types of information. For example,
OPEN DECLARATION locates method declarations, FIND REF-
ERENCES locates references. More generally Eclipse provides a
customizable SEARCH tool for locating other information. Despite
the availability of such dedicated tools from the start, many
participants first scrolled through the package explorer and open
files, failed to find the information they needed, then switched to
using tools. We hypothesize that developers did not use search
tools because of a lack of familiarity and that knowledge of tools
improves developers’ effectiveness in resolving security defects.

3.3.2 Control Flow and Call Information (10){13}
Participants sought information about the callers and callees of
potentially vulnerable methods.

Where is the method being called? (10)
How can I get calling information? (7)
Who can call this? (5)
Are all calls coming from the same class? (3)

What gets called when this method gets called? (2)

Participants asked some of these questions while exploring the
Path Traversal vulnerability. While exploring this vulnerability,
many participants eventually hypothesized that all the calls origi-
nated from the same test class, therefore were not user-facing, and
thus would not be called with tainted values. Three participants
explicitly asked, Are all calls coming from the same class? In
fact, in this case, participants’ hypotheses were partially correct.
Tracing up the call chains, the method containing the vulnerability
was called from multiple classes, however those classes were all
contained within a test package. Even though all participants did
not form this same hypothesis, all ten participants wanted call
information for the Path Traversal Vulnerability, often asking the
question, Where is this method being called?

Call information is not a security-specific information need.
For instance, prior studies have identified the following related
questions: “What’s statically related to this code?” [27]; “When
during the execution is this method called?” [47]; “Where is
this method called or type referenced?” [47]. Further, Latoza and
Myers identified a similar category of ‘Hard-to-answer questions’
in their study. [32] Many questions they report overlap with those
that we report. However, they do not report questions about the
distribution of call sites, in other words, whether calls all originate
from the same source or multiple possible call sites. As we
discussed above, this type of question had security implications,
because it helped our participants assess whether a vulnerability
could be exploited.

Strategies and Assumptions: Participants used various strate-
gies to obtain information about control flow. The most basic
strategy was simply skimming the file for method calls, which
was error-prone because participants could easily miss calls. Other
participants used Eclipse’s MARK OCCURRENCES tool (code high-
lighting near (B) in Figure 1), which, to a lesser extent, was error-
prone for the same reason. Further, it only highlighted calls within
the current file.

Participants additionally employed Eclipse’s FIND tool, which
found all occurrences of a method name, but there was no
guarantee that strings returned referred to the same method. Also,
it returned references that occurred in dead code or comments. Al-
ternatively, Eclipse’s FIND REFERENCES tool identified references
to a single method. Eclipse’s CALL HIERARCHY tool enabled
users to locate calls and traverse the project’s entire call structure.
That said, it only identified explicit calls made from within the
system. If the potentially vulnerable code was called from external
frameworks, CALL HIERARCHY would not alert the user.

We hypothesize that developers first default to the tools and
techniques, like scrolling or using MARK OCCURRENCES, that are
easiest for them to invoke. Which tools are easier to use may
depend on an individual developer’s familiarity.

3.3.3 Data Storage and Flow (10){11}
Participants often wanted to better understand data being
collected and stored: where it originated and where it was going.
For example, participants wanted to determine whether data was
generated by the application or passed in by the user. Participants
also wanted to know if the data touched sensitive resources like
a database. Questions in this category focus on the application’s
data — how it is created, modified, or used — unlike the questions
in Section 3.3.2 that revolve around call information, essentially

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 11

the paths through which the data can travel.

Where does this information/data go? (9)
Where is the data coming from? (5)
How is data put into this variable? (3)
Does data from this method/code travel to the database? (2)
How do I find where the information travels? (2)
How does the information change as it travels through the
programs? (2)

Participants asked questions about the data pipeline while
assessing three of the four vulnerabilities, many of these questions
arose while assessing the Path Traversal vulnerability.

In their study, Sillito and colleagues identified two questions
that relate to the questions in this category: “What data can
we access from this object?” and “What data is being modified
in this code?” [47]. Additional questions arose in the study by
Latoza and Myers, who identified a similarly named category [32].
Unlike these prior studies, we observed some unique questions
with security implications. In our study, for example, participants
asked whether data reached sensitive contexts (e.g., databases or
web displays) and also whether all data passed through sanitiza-
tion/validation before reaching those contexts. This suggests that
developers might require dedicated tool support — beyond what is
provided by general navigation tools — to answer these questions.

Strategies and Assumptions: While exploring this vulnera-
bility, participants adapted tools such as the CALL HIERARCHY

tool to also explore the program’s data flow. As we discussed in
Control Flow and Call Information, the CALL HIERARCHY tool
helped participants identify methods’ callers and callees. Specifi-
cally, some participants used the CALL HIERARCHY tool to locate
methods that were generating or modifying data. Once participants
identified which methods were manipulating data, they manually
searched within the method for the specific statements that could
modify or create data. They relied on manual searching, because
the tool they were using to navigate the program’s flow, CALL

HIERARCHY, did not provide information about which statements
were modifying and creating data.

Some participants failed because they used aggregation strate-
gies, rather than tracing individual data elements. This was partic-
ularly evident for Task 3, where 12 variables were aggregated in
a form object. By tracing individual variables, some participants
uncovered the incorrect validation function. Others, like P6, grew
tired of tracing each variable and instead considered the form as
a whole. As a result, he overlooked the validation function and
incorrectly concluded the vulnerability was a false positive.

Rather than investigate, participants also made assumptions
about where data comes from, whether it be from a user or
hard-coded test data. For Task 1, P1 incorrectly assumed data
was passed in from a user. He followed up on this weakly-held
assumption by further investigating the origin of the data. His
successful investigation strategy, which included him using the
CALL HIERARCHY tool, led him to correct his initial assumption
and resolve the defect correctly.

3.3.4 Code Background and Functionality (9){17}
Participants asked questions concerning the background and the
intended function of the code being analyzed. The questions in
this category differ from those in Section 3.3.5 because they focus
on the lower-level implementation details of the code.

What does this code do? (9)
Why was this code written this way? (5)
Why is this code needed? (3)
Who wrote this code? (2)
Is this library code? (2)
How much effort was put into this code? (1)

Participants were interested in what the code did as well as
the history of the code. For example, P2 asked about the amount
of effort put into the code to determine whether he trusted that
the code was written securely. He explained, “People were rushed
and crunched for time, so I’m not surprised to see an issue in
the servlets.” Knowing whether the code was thrown together
haphazardly versus reviewed and edited carefully might help
developers determine if searching for vulnerabilities will likely
yield true positives.

Questions about code background have been commonly
reported by previous studies: “How much work [have] peo-
ple done?” [12]; “Who created the API [that I’m about to
change]?” [12]; “Why was this code implemented this way?” [27];
“Why was it done this way?” [32]; “Why wasn’t it done this other
way?” [32]; “Was this intentional, accidental, or a hack?” [32];
“When, how, by whom, and why was this code changed or
inserted?” [32]. One difference in a security context is the subtext
of the questions. As we discussed above, our participants asked
about rushed components and components designed by novices,
because those components might be more vulnerable. Answering
questions about code background could help developers allocate
their scarce security resources.

Strategies and Assumptions: To answer questions in this
category, participants relied primarily on their prior knowledge
of the system. Although they were prohibited by our study design,
developers in collocated teams also seek this design rationale from
the author of the code through face-to-face conversations [27]. We
observed relatively few instances where participants executed ad-
ditional strategies, such as looking at version control information
or system documentation, to substantiate their existing knowledge.

This strategy, or lack thereof, was susceptible to failures
when participants overestimated their knowledge of the system.
For example, while assessing the Path Traversal vulnerability, P2
incorrectly assumed that the methods in the DBBulder module
were only called during development and deployment when iTrust
first starts up.

Participants also sought information about external libraries
and commonly made assumptions about these external libraries,
their correctness, and their functionality. Some assumptions cen-
tered around the proper usage of an external library. For instance,
while skimming SecureRandom’s documentation during Task
2, P8 incorrectly assumed SecureRandom does not provide
a nextInt method. Based on that assumption, P8 proposed
a workaround that was valid, but duplicated the functionality
nextInt already provided.

Other assumptions pertained to the security of external li-
braries. For example, P7 correctly assumed that SecureRandom
handles the secure seeding of random number generators. In
contrast with P8, P7’s correct assumption led him to propose
a more succinct solution. P4 stated that he typically uses the
Django framework for web applications and assumed that using
such external library frameworks meant that he was following
best security practices. Though this assumption did not directly
impact any of P4’s tasks, it illustrates a potentially troubling trust

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 12

for external libraries. Unfortunately, web framework libraries like
Django are susceptible to their own vulnerabilities, many of which
have been enumerated in online databases.2 We hypothesize that
developers look for shallow cues, like a familiar name (Django) or
certain keywords (Secure) while assessing the trustworthiness of
external libraries.

3.3.5 Application Context and Usage (9){9}
Unlike questions in Section 3.3.4, these questions refer to
system-level concepts. For instance, often while assessing the
vulnerabilities, participants wanted to know what the code was
being used for, whether it be testing, creating appointments with
patients, or generating passwords.

What is the context of this vulnerability/code? (4)
Is this code used to test the program/functionality? (4)
What is the method/variable used for in the program? (3)
Will usage of this method change? (2)
Is the method/variable ever being used? (2)

Participants tried to determine if the code in the Potential Path
Traversal vulnerability was used to test the system. P2, P4, P9,
and P10 asked whether the code they were examining occurred in
classes that were only used to test the application.

Prior studies report that developers ask about how code is
generally intended to be used: “What is the purpose of this
code” [27] “What is the intent of this code?” [32]. More closely
related to the questions in this category, developers ask, “How
do test cases relate to packages/classes?” [12]. As we will discuss
below, in a security context participants asked this type of question
to determine whether to scrutinize a module.

Strategies and Assumptions: Participants were particularly
interested in differentiating between two contexts — test code and
application code. As P4 explained, test code does not ship with
the product, so it is held to a different standard from a security
perspective. To answer their questions about tests, participants
sometimes used tools for traversing the call hierarchy; using these
types of tools allowed them to narrow their search to only locations
where the code of interest was being called.

Participants’ strategies for this task were undermined by the
FSB “Bug Explorer” view, because it obscured many of the
usual cues participants would have used to differentiate between
contexts. In iTrust, tests are organized into a test package, which
is separate from the application code. By default, the “Bug
Explorer” view closes the package explorer and omits package
names from the notification text. Without visible package names or
the package explorer, some participants were misled. For instance,
P9 incorrectly inferred the code for Task 3 was contained within
a test class before eventually correcting his mistake, “This one I
would be more inclined to ignore, because it’s a test method I
believe... Wait no, it’s not a test method. No, it’s not.” Had P9 not
corrected his mistake, he would have misdiagnosed the error and
ignored a true positive.

3.3.6 End-User Interaction (8){3}
Questions in this category deal with how end users might
interact with the system or a particular part of the system. Some
participants wanted to know whether users could access critical

2. cve.mitre.org

parts of the code and if measures were being taken to mitigate
potentially malicious activity. For example, while assessing the
Potential Path Traversal vulnerability, participants wanted to
know whether the path is sanitized somewhere in the code before
it is used.

Is there input coming from the user? (4)
Does the user have access to this code? (4)
Does user input get validated/sanitized? (4)

When assessing the Potential Path Traversal vulnerability, P1
and P6 wanted to know if the input was coming from the user
along with whether the input was being validated in the event that
the input did come from the user. While working on the same
task, four participants also asked whether end-user input reached
the code being analyzed.

The questions in this category are most closely related to
reachability questions, and with some effort could be rephrased
as such [31]. For instance, Is there input coming from the user?,
asks whether there is a feasible upstream trace originating at a
user input function reaching the current statement. Otherwise,
prior studies that report information needs in general programming
contexts say little about end-user interactions.

However, these questions do pertain to security research on
attack surfaces [21] and attack surface approximation [52]. An
attack trace, or the sum of all paths for untrusted data into and
out of a system, describes where end-user input interacts with a
system. We hypothesize that providing developers attack surface
information, such as whether a program point is on the attack
surface, could help them answer the questions in this category.

Strategies and Assumptions: For participants, answering
their questions required manual inspection of the source code. For
instance, P6 found a Validator method, which he manually
inspected, to determine if it was doing input validation. He
incorrectly concluded that the Validator method adequately
validated the data.

P2 used CALL HIERARCHY to trace end-user input; he as-
sumed the vulnerability was a true positive if user input reached
the vulnerable line. P1 and P6 searched similarly and determined
that because all the calls to the code of interest appeared to happen
in methods called testDataGenerator(), the code was not
vulnerable.

More generally, participants’ strategies for answering ques-
tions about end-user interaction typically included strategies from
other categories. In other words, participants gathered evidence
by Locating Information (Section 3.3.1), examining Control Flow
(Section 3.3.2), retracing Data Flow (Section 3.3.3) information,
and recalling information about the Code Background (Section
3.3.4). Participants successfully answered questions in this cate-
gory when they successfully synthesized the results of these other
efforts.

3.4 Individuals

3.4.1 Developer Planning and Self-Reflection (8){14}
This category contains questions that participants asked about
themselves. The questions in this category involve the participants’
relationship to the problem, rather than specifics of the code or
the vulnerability notification.

cve.mitre.org

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 13

Do I understand? (3)
What should I do first? (2)
What was that again? (2)
Is this worth my time? (2)
Why do I care? (2)
Have I seen this before? (1)
Where am I in the code? (1)

Participants most frequently asked if they understood the
situation, whether it be the code, the notification, or a piece of
documentation. For instance, as P6 started exploring the validity
of the SQL Injection vulnerability, he wanted to know if he fully
understood the notification before he started exploring, so he went
back to reread the notification before investigating further. These
questions occurred in all four vulnerabilities. We identified two
questions in the prior literature that could be categorized here:
“What am I supposed to work on?” [12] and “Is the problem
worth fixing?” [27].

Strategies and Assumptions: Compared to other categories,
the strategy and assumption analysis results in this category
are sparse. Although we asked participants to think-aloud, they
seemed to resolve questions in this category internally.

3.4.2 Understanding Concepts (7){6}
Some participants encountered unfamiliar terms and concepts in
the code and vulnerability notifications, which prompted them to
ask questions.

What is this concept? (6)
How does this concept work? (4)
What is the term for this concept? (2)

For some vulnerability patterns, FSB links to resources that
define relevant concepts. Otherwise, information about concepts
and terminology could be found online. When asked what infor-
mation he would like to see added to the notification for the Servlet
Parameter vulnerability, which did not include any links, P4 noted
he would have liked the notification to include links defining a
servlet is and how it related to client control.

Strategies and Assumptions: Participants’ strategies for find-
ing information about concepts included clicking the links pro-
vided by FSB. For example, while assessing the Potential Path
Traversal vulnerability, P2, unsure of what path traversal was,
clicked a link, labeled “path traversal attack,” provided by FSB
to get more information. However, this strategy failed when the
hyperlink text poorly described the links’ contents. Unable to
determine the quality and type of information hidden behind
FSB’s links, some participants preferred to search the web for
information about concepts.

If a link was not available or if its contents were unclear, par-
ticipants went to the web to get more information. For instance, P7
and P8 both searched the web for the same unfamiliar term (‘CSRF
token’) while working on the Predictable Random vulnerability —
for this task, FSB did not provide any links.

We observed participants using several noteworthy sub-
strategies while searching online. To find information pertaining
to their particular situation, several participants copied and pasted
content directly from the FSB notification into their web browser.
Participants also demonstrated the simple, yet successful, strategy
of iteratively refining their search terms. For example, after per-
forming a search that failed to return relevant results, P1 added

specificity to his search by adding the term ‘Java’. Finally, we
noticed some consistency in the strategies participants were using
to find information about concepts — several different participants
used the exact same search terms.

3.4.3 Confirming Expectations (4){1}
A few participants wanted to be able to confirm whether the
code accomplishes what they expected. The question asked in this
category was, Is this doing what I expect it to?

Strategies and Assumptions: We did not observe many
overarching strategies or assumptions in this category, in part
because participants rarely signaled to us when they were testing
their expectations. When we did observe participants questioning
their expectations, their strategies varied situationally.

3.5 Problem Solving Support
3.5.1 Resources and Documentation (10){10}
Many participants indicated they would use external resources
and documentation to gain new perspectives on vulnerabilities.
For example, while assessing the Potential Path Traversal
vulnerability, participants wanted to know what their team
members would do or if they could provide any additional
information about the vulnerability.

Can my team members/resources provide me with more
information? (5)
Where can I get more information? (5)
What information is in the documentation? (5)
How do resources prevent or resolve this? (5)
Is this a reliable/trusted resource? (3)
What type of information does this resource link me to? (2)

All ten participants had questions regarding the resources and
documentation available to help them assess a given vulnerability.
Even with the links to external resources provided by two of
the notifications, participants still had questions about available
resources. Some participants used the links provided by FSB to get
more information about the vulnerability. Participants who did not
click the links in the notification had a few reasons for not doing
so. For some participants, the hyperlinked text was not descriptive
enough for them to know what information the link was offering;
others did not know if they could trust the information they found.

Some participants clicked FSB’s links expecting one type
of information, but finding another. For example, P2 clicked
the first link, labeled “WASC: Path Traversal,” while trying to
understand the Potential Path Traversal vulnerability hoping to
find information on how to resolve the vulnerability. When he
did not see that information, he attempted another web search for
the same information. A few participants did not know the links
existed, so they typically used other strategies, such as searching
the web.

Other participants expressed interest in consulting their team
members. For example, when P10 had difficulty with the Potential
Path Traversal vulnerability, he stated that he would normally ask
his team members to explain how the code worked. Presumably,
the code’s author could explain how the code was working,
enabling the developer to proceed with fixing the vulnerability.

Prior information needs studies discuss the use of resources
and documentation. For instance, Fritz and Murphy report that
developers rely on team members for code review, “Who has

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 14

knowledge to do code review?”. In software ecosystems, down-
stream users rely on the availability of good documentation [20].
Ko and colleagues’s questions do not refer directly to documen-
tation or help resources [27]. Instead, documentation is discussed
as a means of obtaining answers to questions. It seems quality
help resources and documentation are valued in many contexts,
including but not limited to security.

Strategies and Assumptions: Participants’ primary strategy
involved consulting the code (i.e. variable and class names) along
with its sparse comments. Participants seemed to successfully use
this information to understand basic code constructs (i.e. control
structures, variable types, method calls, and which variables were
being stored in which data structures). However, these strategies
sometimes failed to convey security-relevant semantic informa-
tion. Further, this strategy fell short when participants sought
documentation for IDE tools or external APIs; such information
was not readily available within the code itself.

Supplementing their primary strategy, participants gathered
additional information from web resources. Additionally, partic-
ipants described their plans to contact team members for help,
although they could not do so within the confines of the study.

3.5.2 Understanding and Interacting with Tools (8){9}
Throughout the study participants interacted with a variety of
tools including FSB, CALL HIERARCHY, and FIND REFERENCES.
While interacting with these tools, participants asked questions
about how to access specific tools, how to use the tools, and how
to interpret their output.

Why is the tool complaining? (3)
Can I verify the information the tool provides? (3)
What is the tool’s confidence? (2)
What is the tool output telling me? (1)
What tool do I need for this? (1)
How can I annotate that these strings have been escaped and the
tool should ignore the warning? (1)

Participants asked questions about accessing the tools needed
to complete a certain task. Participants sometimes sought informa-
tion from a tool, but could not determine how to invoke the tool or
possibly did not know which tool to use. The question, What tool
do I need for this? points to a common blocker for both novice
and experienced developers, a lack of awareness [39].

Other information needs studies discuss how developers use
tools to answer questions and that there are mismatches between
questions asked and those that tools can answer [27], [47].
However, relatively few studies report any questions about tools
themselves.

Strategies and Assumptions: We observed two types of
strategies in this category, tool selection strategies and tool eval-
uation strategies. While selecting tools, participants often knew
what functionality they wanted to achieve, but were unsure how to
find a tool to achieve that functionality. For example, P2 knew he
wanted to navigate to methods up the call hierarchy, but struggled
to identify an appropriate tool. His tool selection strategy involved
first Ctrl-hovering over the current method’s name followed by
right clicking the method name. This strategy failed because the
tool was not available in the Ctrl-hover menu and he failed to
recognize the tool in the right-click menu.

Rather than search for the ideal tool, some participants opted
to opportunistically invoke tools and evaluate the appropriateness

of their output. Unfortunately, these strategies were susceptible to
misinterpretations. For example, one participant opened, closed,
and reopened the CALL HIERARCHY tool several times, unable to
determine whether it was appropriate.

When FSB failed to effectively communicate information
about the location of defects to participants, they made assump-
tions. For Task 3, P10 incorrectly assumed FSB was indicating
an issue with the database access objects (DAOs), rather than the
sanitization methods. He probably made this assumption, because
FSB placed its bug markers in the file containing the DAOs
and not in their associated sanitization methods. Based on that
assumption, he proposed adding a sanitization method to those
objects. This fix is incorrect, because sanitization methods already
existed in another class and just needed to be modified. The
proposed fix would have resolved the vulnerability locally, but
also would have introduced redundant code and violated iTrust’s
architectural convention of organizing all validator classes in the
/validate folder. Furthermore, any component still using the faulty
sanitization methods would still be vulnerable.

3.5.3 Vulnerability Severity and Ranking (5){4}
FSB estimates the severity of each vulnerability it encounters and
reports those rankings to its users (Table 2). Participants asked
questions while interpreting these rankings.

How serious is this vulnerability? (2)
How do the rankings compare? (2)
What do the vulnerability rankings mean? (2)
Are all these vulnerabilities the same severity? (1)

Most of these questions came from participants wanting to
know more about the tool’s method of ranking the vulnerabilities
in the code. For example, after completing the first task (Potential
Path Traversal), P1 discovered the tool’s rank, severity, and con-
fidence reports. He noted how helpful the rankings seemed and
included them in his assessment process for the following vul-
nerabilities. As he began working through the final vulnerability
(SQL Injection), he admitted that he did not understand the tool’s
metrics as well as he thought. He wasn’t sure whether the rank (15)
was high or low and if yellow was a “good” or “bad” color. Some
participants, like P6, did not notice any of the rankings until after
completing all four sessions when the investigator asked about the
tool’s rankings.

Participants in Ko and colleagues’ study made similar inquiries
about the severity of defects, asking: “Is this a legitimate prob-
lem?” [27]; “How difficult will this problem be to fix?” [27]; “Is
the problem worth fixing?” [27].

Strategies and Assumptions: Severity ratings typically help
developers triage vulnerabilities. Due to the limitations of our
controlled study, we preselected the vulnerabilities and the order
in which they would appear. As a result, working with the severity
rankings was not critical for participants to complete their tasks.
Therefore, we observed few assumptions and relatively shallow
strategies in this category; some participants asked questions about
the rankings, but most did not follow up with an investigation.

3.5.4 Notification Text (6){3}
FSB provided short and long descriptions of each vulnerability
(See (A) and (C) in Figure 1, respectively). Participants read and
contemplated these notifications to guide their analysis.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 15

What does the notification text say? (5)
What is the relationship between the notification text and the
code? (2)
What code caused this notification to appear (2)

Beyond asking about the content of the notification, par-
ticipants also asked questions about how to relate information
contained in the notification back to the code. For example, the
Predictable Random vulnerability notes that a predicable random
value could lead to an attack when being used in a secure context.
Many participants attempted to relate this piece of information
back to the code by looking to see if anything about the code that
suggested it is in a secure context. In this situation, the method
containing the vulnerability was named randomPassword(),
which suggested to participants that the code was in a secure
context and therefore a vulnerability that should be resolved.

As we discussed in Section 3.5.2 prior information needs
studies discuss the use of tools, but identified relatively few
questions about the tools themselves. Similarly, relatively few
questions about tool notifications have been reported by previous
studies. Sillito and colleagues identify,“Where in the code is the
text in this error message or UI element?” which is similar to
our, What is the relationship between the notification text and
the code? [47]. Ko and colleagues report that their participants
struggled to make sense of tool notifications, “Three developers
used static analysis tools to check for fault-prone design patterns,
but could not understand the tools’ recommendations” [27]. These
questions likely arise in our study, because our focus was on how
participants interacted with a static analysis tool.

Strategies and Assumptions: Participants’ defect resolution
strategies appeared to include reading portions of the notification
text. The three participants (P3, P4, and P6) who reported the
lowest familiarity with vulnerabilities started 11 of 12 tasks by im-
mediately reading the notification text. Conversely, the participants
(P5 and P7) who reported the most familiarity with vulnerabilities
only started by reading the notification text for 2 of 8 tasks.

The distinctions between these two workflows affected how
participants built hypotheses. Low-familiarity participants built
their initial hypothesis from the notification and tested that hy-
pothesis against the code. On the other hand, high-familiarity
participants used the notification to refine their already-formed
hypotheses. It remains an open question whether tool notifications
currently support one of these workflows more than the other. The
prominence of explanatory text and reference information over
resolution shortcuts might suggest FSB caters to the hypothesis-
building novices. Either way, the presence of two distinct work-
flows suggests tools should support both.

Participants’ strategies also varied in terms of how much of
the notification they read. Some participants read the entirety of
the message before proceeding, whereas others only read the short
descriptions. Several participants read the visible parts of the long
description, but neglected to scroll further to reveal the rest of the
message. Often, this led to problems. For instance, P3 struggled
with the Predictable Random vulnerability because he initially
failed to find documentation for SecureRandom. P3 started the
task by reading only the first half of the long description. After
finally finding the documentation online and completing the task,
the interviewer directed his attention to the overlooked second
half of the long description. P3 read the rest of the description and
realized it contained the information he sought, “I didn’t scroll

down that far. I see it even has a link to generating strong random
number. I could have clicked on this link.”

As an aside, it is possible that pointing out the FSB links to
P3 at this point in the study could have influenced his subsequent
two tasks. However, the FSB notifications for the two subsequent
tasks did not include any links, so even if P3 had been artificially
influenced by our interruption, the interruption likely had little
effect on his final two tasks.

4 DISCUSSION

In this section we discuss the implications of our work.

4.1 Flow Navigation
When iTrust performed security-sensitive operations, participants
wanted to determine if data originated from a malicious source
by tracing program flow. Similarly, given data from the user,
participants were interested in determining how it was used in
the application and whether it was sanitized before being passed
to a sensitive operation. Questions related to these tasks appear
in four different categories (Sections 3.3.1, 3.3.2, 3.3.3, 3.3.6).
We observed participants using three strategies to answer program
flow questions, strategies that were useful, yet potentially error-
prone.

First, when participants asked whether data comes from the
user (a user-facing source), and thus cannot be trusted, or if
untrusted data is being used in a sensitive operation, participants
would navigate through chains of method invocations. When
participants navigated through chains of method invocations, they
were forced to choose between different tools, where each tool had
specific advantages and disadvantages. Lightweight tools, such as
FIND and MARK OCCURRENCES, could be easily invoked and
the output easily interpreted, but they often required multiple
invocations and sometimes returned partial or irrelevant infor-
mation. For example, using MARK OCCURRENCES on a method
declaration highlights all invocations of the method within the
containing file, but it does not indicate invocations in other files.
On the other hand, heavyweight tools, such as CALL HIERARCHY

and FIND REFERENCES, return method invocations made from
anywhere in the source code, but were slower and clumsier for
participants. Moreover, even heavyweight tools do not return all
invocations when looking for tainted data sources; for instance,
CALL HIERARCHY does not indicate when methods are being
called from outside the system by a framework.

Second, when participants asked whether a data source was
user-facing, participants would make inferences based on class
names. For instance, any class that started with Test participants
assumed was as JUnit test case, and thus was not user-facing, and
therefore not a potential source of tainted data. When participants
made inferences based on class names, their inferences were
generally correct that the class name accurately described its role.
However, this strategy fails in situations where the word “Test” is
overloaded; this happens in iTrust where “Test” can also refer to a
medical laboratory test.

Third, a common strategy for participants was to rely on their
existing knowledge of sensitive operations and data sources in
the application. When participants relied on existing knowledge
of sensitive operations and data sources, such reliance may be
failure-prone whenever the code has been changed without their
knowledge. Indeed, prior research suggests that developers are
less knowledgeable about unstable code [13]. Additionally, when

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 16

a developer only contributes to a portion of the system, as is often
the case in the open source community [38], he may be unable to
reason about the system-wide implications of a change.

Much like work that examines more general programming
tasks [32], we observed that participants would have benefited
from better program flow navigation tools while investigating
security vulnerabilities. Although researchers have proposed en-
hanced tools to visualize call graphs [33] and trace control flow
to its origin [3], in a security context, these tools share the same
limitations as the existing heavyweight tools. Existing tools like
CodeSonar [56] and Coverity provide source-to-sink notifications
for analyzing security vulnerabilities, but take control away from
the programmer by forcing the developer into a tool-dictated
workflow.

We envision a new tool that helps developers reason about con-
trol flow and data flow simultaneously, by combining the strengths
of existing heavy and lightweight tools. We imagine such a tool
could use existing heavyweight program analysis techniques, but
still use a lightweight user interface. For example, such a tool
might use a full-program, call hierarchy analysis technique in the
back end, but use a MARK OCCURRENCES-like user interface on
the front end. To indicate calls from outside the current class,
additional lightweight notifications would be needed. Such a tool
could support both lightweight and systematic investigation of the
flow of potentially tainted data. We implemented such a prototype
tool, which we call Flower, as a plugin for the Eclipse IDE [49].
Our preliminary evaluation showed that Flower helped developers
navigate program flow quickly and accurately, especially over
program structures with relatively few branches.

4.2 Structured Vulnerability Notifications
FSB provided explanatory notifications of potential vulnerabili-
ties. However, to completely resolve vulnerabilities, participants
performed many cognitively demanding tasks beyond simply
locating the vulnerability and reading the notification, as is evi-
denced by the breadth of questions they asked. To resolve potential
vulnerabilities, we observed participants deploying a mix of sev-
eral high-level strategies including: inspecting the code; navigating
to other relevant areas of the code; comparing the vulnerability
to previous vulnerabilities; consulting documentation and other
resources; weighing existing knowledge against information in the
notification; and reasoning about the feasibility of all the possible
attacks. Yet, these strategies were limited in three respects.

Participants used error-prone strategies even when more reli-
able tools and strategies were available. For example, in Section
3.5.1, we noted that participants, unaware of the relevant hyper-
links embedded within the notification text, searched for links to
external resources using web search tools. The web searches often
returned irrelevant results. However, when the interviewer pointed
out the embedded links after the session, participants stated that
they probably should have clicked them.

Second, even after choosing an effective strategy, participants
were often unaware of which tools to use to execute the strategy.
For example, while assessing the Servlet Parameter vulnerability,
participants wanted to determine whether certain input parameters
were ever validated, but were not aware of any tools to assist
in this process. Previous research suggests that both novice and
experienced developers face problems of tool awareness [39].

Third, regardless of the strategies and tools participants used,
they had to manually track their progress on each task. For exam-
ple, the Servlet Parameter vulnerability involved twelve tainted

References

WASC : Path Traversal

OWASP : Path Traversal

CAPEC-126: Path Traversal

CWE-99: Improper Control of Resource Identifiers (‘Resource Injection)

Fig. 4. Reference links provided by FSB for Path Traversal vulnerability

parameters and introduced the possibility of several types of
attacks. Participants had to reason about each of those attacks
individually and remember which attacks they had ruled out. In
a more general programming context, researchers have warned
about the risks of burdening developers’ memories with too many
concurrent tasks — overburdening developers’ attentive memories
can result in concentration failure and limit failure [41].

We envision an approach that addresses these limitations by
explicating developers’ strategies in the form of hierarchically
structured checklists. Previous research suggests that checklists
can effectively guide developers [42]. We propose a structure
that contains hierarchical, customizable tasks for each type of
notification. For example, the structure would contain high-level
tasks, such as “Determine which attacks are feasible,” and sub-
sequently more actionable nested subtasks, such as “Determine
if a SQL injection attack is feasible” or “Determine if an XSS
attack is feasible.” This structure would also include a checklist-
like feature that allows users to save the state of their interaction
with a particular notification — for example, checking off which
attack vectors they have already ruled out — diminishing the risk
of concentration failure and limit failure. Additionally, each task
could include links to resources that relate specifically to that task
and tool suggestions that could help developers complete the task.
We present more details about our vision for such a tool, including
a mockup, in a related publication [48].

4.3 Context-Informed Web Search
Accessing web resources was an important element of partici-
pants’ strategies across several categories (Section 3.2.1, Section
3.2.2, Section 3.4.2, Section 3.5.1). To find success, participants
sought information that was scattered around different sites. De-
pending on the task and an individual’s approach, participants
found critical clues hidden on StackOverflow, official documen-
tation pages, and personal blogs, for instance.

To reach these helpful web resources, participants either fol-
lowed the links that FSB had curated, or used an online search
engine. Both of these approaches are failure-prone. However,
by drawing inspiration from the positive aspects of each of
these approaches, we will propose a new tool-assisted approach
for gathering resources from the web while diagnosing a static
analysis defects. We will refer to this approach as context-informed
web search.

FSB includes links to web resources in its description of
some defects under the header “References” (Figure 4). FSB’s
designers assumedly deem these references relevant and helpful,
and, when references to the right types of information were
available, participants tended to use them. Unfortunately, the links
in each references section cover a limited number of topics.
As in the example depicted by Figure 4, the reference material
might describe the defect and how to exploit it, but not provide
code examples for remedies. In practice, participants sought
information and visited sites beyond what was available in the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 17

finite reference sections. To summarize, the references encapsulate
the tool designer’s expertise and knowledge of a specific defect
pattern, but are not tailored to the user’s needs.

Participants also used search engines to locate web resources,
sometimes as a primary means, other times after having exhausted
the FSB links. With this approach, participants had to sift through
long lists of irrelevant results to find useful information. As de-
scribed in Section 3.4.2, some participants iteratively refined their
search terms to filter out as many irrelevant results as possible.
Others simply tested link after link until they found something
useful or gave up.

The two approaches for accessing web resources described so
far (using tool links and performing a search) fail in complemen-
tary ways. The tool’s list of links only cover a narrow set of topics,
with each link highly relevant to the defect reported. Conversely,
search engines over-approximate the set of relevant resources, but
cover far more topics of interest.

We envision a new way for developers to access web resources
while resolving defects with static analysis, context-informed
web search. This approach improves on existing approaches by
combining the breadth of web search with the relevance afforded
by a tool’s contextual awareness. Users would perform a context-
informed web search just as they would any other web search,
but enter their query into a specialized search engine, rather than
a general-purpose search engine. The specialized search engine
would work in tandem with the developers’ static analysis tool and
would start by fetching results just like a general-purpose search
engine. Before returning those results to the user, the specialized
search engine would query the static analysis tool for details
about the developers context — information the tool has already
computed in order to detect defects. Finally, the specialized search
engine would only display context-relevant results.

Consider, for example, a developer who searches for ‘secure
random number.’ A general-purpose search engine would return
results targeted at Ruby, Javascript, Android, and Java developers.
The specialized search engine could conclude from the static
analysis tool that the developer was using Java and importing
java.util.Random and filter out irrelevant results pertaining to other
languages.

This information searching approach draws inspiration from
several prior efforts. The Mica tool [51] analyzes search results
and presents users with information about which results might be
most relevant, compared with our approach, which proposes taking
information from the source code and a static analysis tool. Rah-
man and colleagues [43] and Goldman and Miller [15] similarly
describe adapted search engines, theirs based in the IDE. These
previous works create search queries using information from the
source code and from stack traces. Our proposed approach differs
in that we also consider contextual information from a static
analysis tool.

5 RELATED WORK

We have organized the related work into three subsections. Section
5.1 outlines some of the current approaches researchers use to
evaluate security tools, Section 5.2 references other studies that
have explored developers’ information needs, and Section 5.3
relates our work to the other work on strategies.

5.1 Evaluating Security Tools
Using a variety of metrics, many studies have assessed the effec-
tiveness of the security tools developers use to find and remove
vulnerabilities from their code [2], [35], [36].

Much research has evaluated the effectiveness of tools based
on their false positive rates and how many vulnerabilities they
detect [2], [10], [25]. For instance, Jovanovic and colleagues
evaluate their tool, PIXY, a static analysis tool that detects cross-
site scripting vulnerabilities in PHP web applications [25]. They
considered PIXY effective because of its low false positive rate
(50%) and its ability to find vulnerabilities previously unknown.
Similarly, Livshits and Lam evaluated their own approach to
security-oriented static analysis, which creates static analyzers
based on inputs from the user [35]. They also found their tool
to be effective because it had a low false positive rate.

Austin and Williams compared the effectiveness of four ex-
isting techniques for discovering security vulnerabilities: system-
atic manual penetration testing, exploratory manual penetration
testing, static analysis, and automated penetration testing [2].
Comparing the four approaches based on number of vulnerabilities
found, false positive rate, and efficiency, they reported that no one
technique was capable of discovering every type of vulnerability.

Dukes and colleagues conducted a case study comparing static
analysis and manual testing vulnerability-finding techniques [10].
They found combining manual testing and static analysis was most
effective, because it located the most vulnerabilities.

These studies use various measures of effectiveness, such as
false positive rates or vulnerabilities found by a tool, but none
focus on how developers interact with the tool. Further, these
studies do not evaluate whether the tools address developers’
information needs. Unlike existing studies, our study examines
a security tool through the lens of developers’ information needs
and, accordingly, provides a novel framework for evaluating secu-
rity tools.

5.2 Information Needs Studies
Several studies have explored developers’ information needs out-
side the context of security. In contrast to previous studies, our
study focuses specifically on the information needs of developers
while performing a more specific task, assessing security vulner-
abilities. Though some prior studies identify needs pertaining to
debugging and defect fixing, none specifically study the process
of diagnosing security defects. Unsurprisingly, some of the infor-
mation needs previously identified as general programming needs
and general debugging needs also occur while developers assess
security vulnerabilities (e.g., Sections 3.3.2 and 3.3.3). Here we
will summarize these prior works and compare to their method-
ologies chosen and task domains studied. In the results section
(Section 3) we highlight noteworthy similarities and differences in
terms of our findings.

Sillito and colleagues studied the questions asked during
change tasks [47], creating a catalog of 44 questions. They
conducted two observational studies with developers who were
either familiar or unfamiliar with the code they were contributing
to. Unlike our study, the tasks in these studies were primarily
focused on changes that added features to the code base, rather
than fixing some type of defect.

Fritz and Murphy conducted a series of 11 open interviews
and identified 78 questions developers ask [12]. Rather than study
questions that focus on the source code, their study identifies

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 18

questions that require developers to integrate multiple types of
information. As a result, most questions identified in this study
pertain to the social and collaborative aspects of developing
software, as opposed to more granular questions about code. Based
on the questions they identified, Fritz and Murphy developed a
model and prototype tool to assist developers with answering their
questions. Our study complements this work because we identify
developers’ questions while observing them interacting with a
code base and a static analysis tool.

Similar to Fritz and Murphy, Haenni and colleagues also inves-
tigate developers’ social and collaborative information needs by
surveying framework and library developers in software ecosys-
tems [20]. They organize their findings into two main categories,
upstream and downstream information needs, identifying 6 and 8
needs in each category, respectively.

In a similar approach to our study, Ko and colleagues identified
21 information needs by observing developers — however, in
their study participants were members of collocated teams [27].
LaToza and Myers surveyed professional software developers to
understand the questions developers ask during their daily coding
activities, focusing on the hard to answer questions [32]. After
observing developers in a lab study, they discovered that the
questions developers ask tend to be questions revolving around
searching through the code for target statements or reachability
questions [31]. These studies give us insight into the needs of
developers during general programming tasks. Our work examines
information needs during a more specific programming task, diag-
nosing security vulnerabilities with static analysis. We identified
information needs unique to security, such as needs pertaining to
attacks and vulnerabilities, as well as previously known informa-
tion needs with novel security implications. Throughout Section
3 we have discussed how the information needs identified in
previous studies overlap with the information needs we identified.

5.3 Defect Resolution Approaches

Prior work has noted the importance of strategies. In their inspira-
tional work, Bhavnani and John observed that knowledge of tasks
and tools for complex computer applications such as CAD were
insufficient for developers to be efficient; they found that users
needed to learn good strategies [5]. Additionally, they argue that
the identification of efficient strategies should be a key research
goal. Our work furthers progress toward that goal by identifying
successful strategies for resolving security vulnerabilities.

Similarly, Katz and Anderson noted the importance of good
strategies. They found that a developer’s choice of bug-location
strategy affects his or her ability to assess the correctness of a
line of code [26]. Our work extends that of Katz and Anderson by
focusing on the defect resolution process after a potential bug has
been located.

Several studies have explored the effects of strategies and
assumptions in end-user programming environments. Grigoreanu
and colleagues examined gender differences in debugging strate-
gies for spreadsheet end-user programmers [16], [17]. Through
a think-aloud study, they found that women and men employed
different strategies. For example, women tended to use compre-
hensive information processing styles, where they overview the
task before making changes; in contrast, men tended to selec-
tively process information. Gross and colleagues conducted an
exploratory study in which end-user programmers were asked to
find and modify code for specific functionality with unfamiliar

programs, which they classified into models [18]. Ko and col-
leagues categorized six types of learning barriers faced by end-user
programmers [28]. They discussed how end-user programmers can
overcome learning barriers by making simplifying assumptions,
but incorrect assumptions often lead to errors. We are similarly
interested in strategies and assumptions. In contrast to the prior
work, we focus on the domain of security vulnerabilities rather
than end-user programming environments.

Researchers have also studied strategies in the context of
program comprehension. Program comprehension refers to the
process by which developers make sense of unfamiliar code.
An overly simplified summarization of program comprehension
strategies broadly organizes models into two categories: bottom-
up and top-down. In strategies viewed from a bottom-up [46]
perspective, developers combine small pieces of information to
form larger “chunks” until the entire program is understood.
Alternatively, in the top-down model [6], developers maintain a
mental model of the system based on their domain knowledge
and update that mental model as they discover new evidence.
Mayrhauser and Vans provide more thorough descriptions of six
different models of program comprehensions strategies [53]. Our
findings suggest that program comprehension plays an important
role in defect resolution, because developers’ defect resolution
strategies, especially those we describe in Sections 3.3.4 and
3.3.5, are partly about about trying to understand code. Indeed,
to resolve some defects, developers must explore both familiar
and unfamiliar code. However, other strategies we identified, such
as those pertaining to modifying code and interacting with tools,
seem beyond the scope of program comprehension.

6 THREATS TO VALIDITY

We faced the internal threat of recording questions that participants
asked because they lacked a basic familiarity with the study
environment. We took two steps to mitigate this threat. First,
we required participants to have experience working on iTrust.
Second, at the beginning of each session, we briefed participants
on FSB and the development environment. During these briefing
sessions, we gave participants the opportunity to ask questions
about the environment and study setup, though we cannot say for
certain that participants asked all the questions they had at that
time. Thus, some of the questions we identified may reflect partic-
ipants’ initial unfamiliarity with the study environment and FSB.
Since we are interested broadly in developers’ information needs,
the initial questions they ask about a new tool and environment
still are an important subset to capture.

Our mitigation strategy of recruiting participants who were
familiar with the iTrust code base introduced its own threat. This
design decision limited our population to students and developers
who studied at North Carolina State University at some point in
time. The participants we studied limit generalization and may not
represent the range of developers who would use security tools.
For instance, we likely cannot completely generalize these results
to security experts — none of our participants self-identified as
such.

The fact that this study was conducted in a controlled environ-
ment rather than an industrial development setting raises a threat
to the external validity of our results. Though we cannot and do
not claim that we have identified a comprehensive categorization
of all security-related questions all developers might ask, we have
made several efforts to mitigate this threat. First, we included both

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 19

students and professionals in our sample, because questions might
differ based on experience. Further, participants were equipped
with FSB, a representative open source static analysis tool with
respect to its user interface. Finally, we chose iTrust, an industrial-
scale open-source project as our subject application.

Another reason we cannot claim our categorization is com-
prehensive is because the questions and strategies may have been
dependent on the four FSB notifications we chose and the order
they were presented in. We did not study all types of security
defects. In fact, there are many defects that are not even detected
by FSB. Although we chose the four notifications to span different
topics as categorized by FSB, there may be information needs and
strategies these topics did not expose.

As we discussed in Section 2.5, participants likely made many
assumptions without explicitly stating them. Participants might
have also felt obliged to actively pursue strategies while being
observed in a lab setting. As a result, we likely identified fewer
assumptions than participants actually made. Therefore, relative to
the results for RQ2 where strategies were visible, there are fewer
assumptions to discuss. To mitigate this threat, we used stemming
and lemmatisation to capture as many explicitly stated assump-
tions as possible, specifically those where participants did not just
use the word “assume.” Despite the scarcity of assumptions in our
results, we believe they are worthwhile to include because they
give us insight into how developers sometimes choose to satisfy
information needs without actively executing a strategy.

Participants also may have spent an unrealistic amount of time
(either too much or too little) on each task due to working outside
their normal environment. To counteract this threat, we did not
restrict the amount of time alloted for each task. Further, whenever
a participant asked the interviewer what to do next, the interviewer
provided minimal guidance, typically prompting the participant to
proceed as (s)he would in her normal work environment.

An additional threat is that the think aloud protocol may have
influenced participants actions. Consequently, participants may
have had different information needs or strategies than they would
in the wild. For example, developers may have reflected more on
the vulnerabilities than they would have in their normal working
environments, causing them to approach them more carefully. This
is perhaps evidenced by the existence of the Developer Planning
and Self-Reflection category (Section 3.4.1).

7 CONCLUSION

This paper reported on a study that explored how developers
resolve security defects while using static analysis. During our
study, we asked ten software developers to describe their thoughts
as they assessed potential security vulnerabilities in iTrust, a
security-critical web application. We presented the results of our
study as a categorization of questions and a catalog of strategies
for answering those questions. This work advocates for tools that
not only detect vulnerabilities, but also help developers actually
resolve those vulnerabilities. Our findings have several implica-
tions for the design of static analysis tools. Most broadly, tools
should support effective strategies and provide information that
aligns with the information needs we have identified. In particular,
our results suggest that tools should help developers, among other
things, search for relevant web resources.

ACKNOWLEDGMENTS

We would like to thank our study participants. Special thanks to
Xi Ge, Anthony Elliott, Emma Laperruque, and the Developer
Liberation Front3 for their assistance. This material is based upon
work supported by the National Science Foundation under grant
numbers 1318323 and DGE–0946818.

REFERENCES

[1] N. Ammar and M. Abi-Antoun. Empirical evaluation of diagrams of the
run-time structure for coding tasks. In Reverse Engineering (WCRE),
2012 19th Working Conference on, pages 367–376. IEEE, 2012.

[2] A. Austin and L. Williams. One technique is not enough: A comparison
of vulnerability discovery techniques. In Empirical Software Engineering
and Measurement (ESEM), 2011 International Symposium on, pages 97–
106. IEEE, 2011.

[3] M. Barnett, R. DeLine, A. Lal, and S. Qadeer. Get me here: Using
verification tools to answer developer questions. Technical Report MSR-
TR-2014-10, February 2014.

[4] S. K. Bhavnani and B. E. John. From sufficient to efficient usage: An
analysis of strategic knowledge. In Proceedings of the ACM SIGCHI
Conference on Human factors in computing systems, pages 91–98. ACM,
1997.

[5] S. K. Bhavnani and B. E. John. The strategic use of complex computer
systems. Human-Computer Interaction, 15(2):107–137, Sept. 2000.

[6] R. Brooks. Towards a theory of the cognitive processes in computer
programming. International Journal of Man-Machine Studies, 9(6):737–
751, 1977.

[7] H. Chen and D. Wagner. Mops: an infrastructure for examining security
properties of software. In Proceedings of the 9th ACM conference on
Computer and communications security, pages 235–244. ACM, 2002.

[8] M. Christakis and C. Bird. What developers want and need from program
analysis: An empirical study. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, pages
332–343. ACM, 2016.

[9] D. Cornell. Remediation statistics: what does fixing application vulner-
abilities cost. Proceedings of the RSAConference, San Fransisco, CA,
USA, 2012.

[10] L. Dukes, X. Yuan, and F. Akowuah. A case study on web application
security testing with tools and manual testing. In Southeastcon, 2013
Proceedings of IEEE, pages 1–6. IEEE, 2013.

[11] N. Fairclough. Analysing discourse: Textual analysis for social research.
Psychology Press, 2003.

[12] T. Fritz and G. C. Murphy. Using information fragments to answer
the questions developers ask. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1, pages 175–
184. ACM, 2010.

[13] T. Fritz, G. C. Murphy, E. Murphy-Hill, J. Ou, and E. Hill. Degree-
of-knowledge: Modeling a developer’s knowledge of code. ACM Trans.
Softw. Eng. Methodol., 23(2):14:1–14:42, Apr. 2014.

[14] B. G. Glaser and A. L. Strauss. The discovery of grounded theory:
Strategies for qualitative research. Transaction Publishers, 2009.

[15] M. Goldman and R. C. Miller. Codetrail: Connecting source code and
web resources. Journal of Visual Languages & Computing, 20(4):223–
235, 2009.

[16] V. Grigoreanu, J. Brundage, E. Bahna, M. Burnett, P. Elrif, and J. Snover.
Males’ and females’ script debugging strategies. In Proceedings of the
2Nd International Symposium on End-User Development, IS-EUD ’09,
pages 205–224, Berlin, Heidelberg, 2009. Springer-Verlag.

[17] V. Grigoreanu, M. Burnett, S. Wiedenbeck, J. Cao, K. Rector, and
I. Kwan. End-user debugging strategies: A sensemaking perspective.
ACM Trans. Comput.-Hum. Interact., 19(1):5:1–5:28, May 2012.

[18] P. Gross and C. Kelleher. Non-programmers identifying functionality
in unfamiliar code: Strategies and barriers. J. Vis. Lang. Comput.,
21(5):263–276, Dec. 2010.

[19] G. Guest, A. Bunce, and L. Johnson. How many interviews are enough?
an experiment with data saturation and variability. Field methods,
18(1):59–82, 2006.

[20] N. Haenni, M. Lungu, N. Schwarz, and O. Nierstrasz. Categorizing
developer information needs in software ecosystems. In Proceedings of
the 2013 International Workshop on Ecosystem Architectures, pages 1–5.
ACM, 2013.

3. research.csc.ncsu.edu/dlf/

research.csc.ncsu.edu/dlf/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 20

[21] M. Howard, J. Pincus, and J. M. Wing. Measuring relative attack
surfaces. In Computer security in the 21st century, pages 109–137.
Springer, 2005.

[22] W. Hudson. Card Sorting. The Interaction Design Foundation, Aarhus,
Denmark, 2013.

[23] B. Johnson, R. Pandita, J. Smith, D. Ford, S. Elder, E. Murphy-Hill,
S. Heckman, and C. Sadowski. A cross-tool communication study on
program analysis tool notifications. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 73–84. ACM, 2016.

[24] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge. Why don’t
software developers use static analysis tools to find bugs? In Software
Engineering (ICSE), 2013 35th International Conference on, pages 672–
681. IEEE, 2013.

[25] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analysis tool for
detecting web application vulnerabilities. In Security and Privacy, 2006
IEEE Symposium on, pages 6–pp. IEEE, 2006.

[26] I. R. Katz and J. R. Anderson. Debugging: An analysis of bug-location
strategies. Hum.-Comput. Interact., 3(4):351–399, Dec. 1987.

[27] A. J. Ko, R. DeLine, and G. Venolia. Information needs in collocated
software development teams. In Proceedings of the 29th International
Conference on Software Engineering, ICSE ’07, pages 344–353, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[28] A. J. Ko, B. A. Myers, and H. H. Aung. Six learning barriers in end-
user programming systems. In Proceedings of the 2004 IEEE Symposium
on Visual Languages - Human Centric Computing, VLHCC ’04, pages
199–206, Washington, DC, USA, 2004. IEEE Computer Society.

[29] O. Kononenko, D. Dietrich, R. Sharma, and R. Holmes. Automatically
locating relevant programming help online. In Visual Languages and
Human-Centric Computing (VL/HCC), 2012 IEEE Symposium on, pages
127–134. IEEE, 2012.

[30] J. R. Landis and G. G. Koch. The measurement of observer agreement
for categorical data. Biometrics, 33(1):pp. 159–174, 1977.

[31] T. D. LaToza and B. A. Myers. Developers ask reachability questions.
In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 1, pages 185–194. ACM, 2010.

[32] T. D. LaToza and B. A. Myers. Hard-to-answer questions about code. In
Evaluation and Usability of Programming Languages and Tools, page 8.
ACM, 2010.

[33] T. D. LaToza and B. A. Myers. Visualizing call graphs. In Visual
Languages and Human-Centric Computing (VL/HCC), 2011 IEEE Sym-
posium on, pages 117–124. IEEE, 2011.

[34] S. Letovsky. Cognitive processes in program comprehension. Journal of
Systems and software, 7(4):325–339, 1987.

[35] V. B. Livshits and M. S. Lam. Finding security vulnerabilities in java
applications with static analysis. In Usenix Security, pages 18–18, 2005.

[36] M. Martin, B. Livshits, and M. S. Lam. Finding application errors and
security flaws using pql: a program query language. In ACM SIGPLAN
Notices, volume 40, pages 365–383. ACM, 2005.

[37] S. Mauw and M. Oostdijk. Foundations of attack trees. In D. Won
and S. Kim, editors, Information Security and Cryptology - ICISC 2005,
volume 3935 of Lecture Notes in Computer Science, pages 186–198.
Springer Berlin Heidelberg, 2006.

[38] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case studies of open
source software development: Apache and mozilla. ACM Trans. Softw.
Eng. Methodol., 11(3):309–346, July 2002.

[39] E. Murphy-Hill, R. Jiresal, and G. C. Murphy. Improving software devel-
opers’ fluency by recommending development environment commands.
In Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering, FSE ’12, pages 42:1–42:11,
New York, NY, USA, 2012. ACM.

[40] J. Nielsen, T. Clemmensen, and C. Yssing. Getting access to what
goes on in people’s heads?: reflections on the think-aloud technique.
In Proceedings of the second Nordic conference on Human-computer
interaction, pages 101–110. ACM, 2002.

[41] C. Parnin and S. Rugaber. Programmer information needs after memory
failure. In Program Comprehension (ICPC), 2012 IEEE 20th Interna-
tional Conference on, pages 123–132. IEEE, 2012.

[42] K. Y. Phang, J. S. Foster, M. Hicks, and V. Sazawal. Triaging checklists:
a substitute for a phd in static analysis. Evaluation and Usability of
Programming Languages and Tools (PLATEAU) PLATEAU 2009, 2009.

[43] M. M. Rahman, S. Yeasmin, and C. K. Roy. Towards a context-aware
ide-based meta search engine for recommendation about programming
errors and exceptions. In Software Maintenance, Reengineering and
Reverse Engineering (CSMR-WCRE), 2014 Software Evolution Week-
IEEE Conference on, pages 194–203. IEEE, 2014.

[44] M. P. Robillard, W. Coelho, and G. C. Murphy. How effective developers
investigate source code: An exploratory study. IEEE Transactions on
software engineering, 30(12):889–903, 2004.

[45] F. Servant and J. A. Jones. History slicing: assisting code-evolution tasks.
In Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering, page 43. ACM, 2012.

[46] B. Shneiderman and R. Mayer. Syntactic/semantic interactions in
programmer behavior: A model and experimental results. International
Journal of Computer & Information Sciences, 8(3):219–238, 1979.

[47] J. Sillito, G. C. Murphy, and K. De Volder. Asking and answering
questions during a programming change task. IEEE Transactions on
Software Engineering, 34(4):434–451, 2008.

[48] J. Smith. Identifying successful strategies for resolving static analysis
notifications. In Proceedings of the 38th International Conference on
Software Engineering Companion, pages 662–664. ACM, 2016.

[49] J. Smith, C. Brown, and E. Murphy-Hill. Flower: Navigating program
flow in the ide. In Proceedings of the IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC’17), Oct. 2017.

[50] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R. Lipford. Ques-
tions developers ask while diagnosing potential security vulnerabilities
with static analysis. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, pages 248–259,
New York, NY, USA, 2015. ACM.

[51] J. Stylos and B. A. Myers. Mica: A web-search tool for finding api
components and examples. In Visual Languages and Human-Centric
Computing, 2006. VL/HCC 2006. IEEE Symposium on, pages 195–202.
IEEE, 2006.

[52] C. Theisen, K. Herzig, P. Morrison, B. Murphy, and L. Williams.
Approximating attack surfaces with stack traces. In Proceedings of the
37th International Conference on Software Engineering-Volume 2, pages
199–208. IEEE Press, 2015.

[53] A. Von Mayrhauser and A. M. Vans. Program comprehension during
software maintenance and evolution. Computer, 28(8):44–55, 1995.

[54] Y. Yoon, B. A. Myers, and S. Koo. Visualization of fine-grained code
change history. In Visual Languages and Human-Centric Computing
(VL/HCC), 2013 IEEE Symposium on, pages 119–126. IEEE, 2013.

[55] Nist source code security analyzers. http://samate.nist.gov/index.php/
Source Code Security Analyzers.html.

[56] Codesonar. http://grammatech.com/codesonar.
[57] Coverity. http://coverity.com/.
[58] Security questions experimental materials. https://figshare.com/projects/

How Developers Diagnose Potential Security Vulnerabilities with
Static Analysis/24439.

[59] Find security bugs. http://h3xstream.github.io/find-sec-bugs/.
[60] Hippa statute. http://hhs.gov/ocr/privacy/.
[61] itrust software system. http://agile.csc.ncsu.edu/iTrust/wiki/doku.php?

id=start.
[62] Otranscribe. http://otranscribe.com.
[63] Owasp source code analysis tools. http://owasp.org/index.php/Source

Code Analysis Tools.
[64] Owasp. http://owasp.org/index.php/Main Page.
[65] Web application security consortium static code analysis tools. http:

//projects.webappsec.org/w/page/61622133/StaticCodeAnalysisList.

Justin Smith Justin is a PhD student at North
Carolina State University. His research inter-
ests include human-computer interaction, soft-
ware engineering, and security tools. Contact
him at jssmit11@ncsu.edu; http://www4.ncsu.
edu/∼jssmit11

http://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
http://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
http://grammatech.com/codesonar
http://coverity.com/
https://figshare.com/projects/How_Developers_Diagnose_Potential_Security_Vulnerabilities_with_Static_Analysis/24439
https://figshare.com/projects/How_Developers_Diagnose_Potential_Security_Vulnerabilities_with_Static_Analysis/24439
https://figshare.com/projects/How_Developers_Diagnose_Potential_Security_Vulnerabilities_with_Static_Analysis/24439
http://h3xstream.github.io/find-sec-bugs/
http://hhs.gov/ocr/privacy/
http://agile.csc.ncsu.edu/iTrust/wiki/doku.php?id=start
http://agile.csc.ncsu.edu/iTrust/wiki/doku.php?id=start
http://otranscribe.com
http://owasp.org/index.php/Source_Code_Analysis_Tools
http://owasp.org/index.php/Source_Code_Analysis_Tools
http://owasp.org/index.php/Main_Page
http://projects.webappsec.org/w/page/61622133/StaticCodeAnalysisList
http://projects.webappsec.org/w/page/61622133/StaticCodeAnalysisList
http://www4.ncsu.edu/~jssmit11
http://www4.ncsu.edu/~jssmit11

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YEAR 21

Brittany Johnson Brittany is a postdoctoral
researcher at University of Massachusetts,
Amherst. Her research interests include human-
computer interaction, software tools and pro-
cesses, and machine learning. She holds a
Ph.D. in Computer Science from North Car-
olina State University. Contact her at bjohn-
son@cs.umass.edu; https://people.umass.edu/
bijohnson

Emerson Murphy-Hill Emerson is an associate
professor at North Carolina State University. His
research interests include human-computer in-
teraction and software tools. He holds a Ph.D.
in Computer Science from Portland State Uni-
versity. Contact him at emerson@csc.ncsu.edu;
https://people.engr.ncsu.edu/ermurph3/

Bill Chu Bill Chu is Professor of Software and
Information Systems at University of North Car-
olina at Charlotte. His research interest is in soft-
ware security. He received Ph.D. in Computer
Science from the University of Maryland at Col-
lege Park. Contact him at billchu@uncc.edu

Heather Richter Lipford Heather Richter Lip-
ford is a Professor at the University of North
Carolina at Charlotte. Her research interests
are in usable security and privacy. She holds
a Ph.D. from the Georgia Institute of Technol-
ogy. Contact her at Heather.Lipford@uncc.edu;
https://webpages.uncc.edu/richter/

https://people.umass.edu/bijohnson
https://people.umass.edu/bijohnson
https://people.engr.ncsu.edu/ermurph3/
https://webpages.uncc.edu/richter/

	Introduction
	Methodology
	Research Question
	Study Design
	Materials
	Participants
	Tasks

	Data Analysis — Questions
	Question Criteria
	Question Extraction
	Question Review
	Question Sorting

	Data Analysis — Strategies
	Strategy Definitions
	Strategy Extraction
	Strategy Review

	Data Analysis — Assumptions

	Results
	Interpreting the Results
	Vulnerabilities, Attacks, and Fixes
	Preventing and Understanding Attacks (10){11}
	Understanding Approaches and Fixes (8){10}
	Assessing the Application of the Fix (9){9}
	Relationship Between Vulnerabilities (4){3}

	Code and the Application
	Locating Information (10){11}
	Control Flow and Call Information (10){13}
	Data Storage and Flow (10){11}
	Code Background and Functionality (9){17}
	Application Context and Usage (9){9}
	End-User Interaction (8){3}

	Individuals
	Developer Planning and Self-Reflection (8){14}
	Understanding Concepts (7){6}
	Confirming Expectations (4){1}

	Problem Solving Support
	Resources and Documentation (10){10}
	Understanding and Interacting with Tools (8){9}
	Vulnerability Severity and Ranking (5){4}
	Notification Text (6){3}

	Discussion
	Flow Navigation
	Structured Vulnerability Notifications
	Context-Informed Web Search

	Related Work
	Evaluating Security Tools
	Information Needs Studies
	Defect Resolution Approaches

	Threats to Validity
	Conclusion
	References
	Biographies
	Justin Smith
	Brittany Johnson
	Emerson Murphy-Hill
	Bill Chu
	Heather Richter Lipford

