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Abstract—Spreadsheets are perhaps the most ubiquitous form
of end-user programming software. This paper describes a
corpus, called FUSE, containing 2,127,284 URLs that return
spreadsheets (and their HTTP server responses), and 249,376
unique spreadsheets, contained within a public web archive of
over 26.83 billion pages. Obtained using nearly 60,000 hours of
computation, the resulting corpus exhibits several useful prop-
erties over prior spreadsheet corpora, including reproducibility
and extendability. Our corpus is unencumbered by any license
agreements, available to all, and intended for wide usage by end-
user software engineering researchers. In this paper, we detail the
data and the spreadsheet extraction process, describe the data
schema, and discuss the trade-offs of FUSE with other corpora.

I. INTRODUCTION

End-user programmers today constitute a broad class of
users, including teachers, accountants, administrators, managers,
research scientists, and even children [1]. Although these users
are typically not professional software developers, their roles
routinely involve computational tasks that, in many ways, are
similar to those of developers — not just in activity, but also
in their underlying cognitive demands on users [2].

Perhaps the most ubiquitous form [3] of end-user pro-
gramming software are spreadsheets, a table-oriented visual
interface that serves as the underlying model for the users’
applications [4]. Cells within these tables are augmented with
computation, such as expressions, functions and macros [4].
This interplay between presentation and computation within the
spreadsheet environment has garnered significant interest from
the software engineering research community [5]. Researchers
have adopted techniques and approaches to studying errors [6],
code smells [7], and refactoring in spreadsheets [8], similar to
traditional programming environments.

To better understand end-user activities and design tools
to assist end-users, researchers have responded by curating
spreadsheet corpora to support spreadsheet studies [9], [10],
[11]. This paper presents one such spreadsheet corpus, called
FUSE, extracted from the over 26.83 billion web pages in the
Common Crawl1 index. We believe that FUSE offers several
useful traits not found in prior corpora; for example, FUSE
is obtained in such a way that researchers can independently
reproduce an identical corpus from source materials.

1The Common Crawl non-profit organization provides this index to
companies and individuals at no cost for the purpose of research and analysis.
For more information, see http://www.commoncrawl.org.
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Fig. 1. Cumulative count of spreadsheets obtained with each additional crawl.
Web Analysis contains all URLs and associated HTTP server responses, while
Binary Analysis contains the actual spreadsheets for a subset of Web Analysis,
archived within Common Crawl.

The contributions of this paper are two related datasets,
which together constitute the FUSE spreadsheet corpus2:

• A Web Analysis dataset of 2,127,284 URLs that return
spreadsheet content, along with the full HTTP web server
response, formatted as JSON records. This dataset is
obtained by filtering through 26.83 billion HTTP responses
within the Common Crawl archive.

• A Binary Analysis dataset of 249,376 spreadsheets, ex-
tracted from the 1.9 PB of raw data within the Common
Crawl archive. For each spreadsheet, we provide JSON
metadata containing our analysis, which includes NLP
token extraction and spreadsheet metrics.

II. DESCRIPTION OF DATA

The Common Crawl index contains not only the HTTP
responses of web pages, but also the raw content of each of
these resources, including binaries. It is from these monthly
web crawls that we extract and make available spreadsheets
and corresponding metadata, augmented with our analysis, and
tailored to researchers.

The result, FUSE, is characterized through two, hierarchical
datasets (Figure 1): a Web Analysis dataset, and a Binary
Analysis dataset.

Web Analysis: This dataset contains 2,127,284 spreadsheet-
related URLs and HTTP responses. 292,043 of these responses

2The corpus metadata, spreadsheets, tools, and other documentation can be
obtained at http://go.ncsu.edu/fuse.
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Fig. 2. The MapReduce pipeline for extracting spreadsheets and associated spreadsheet analysis metadata from Common Crawl.

point to a unique URL, and the top domain is .org (29.5%),
followed by .gov (27.7%). The analysis contains 6,316 distinct
domain names. Unfortunately, relying solely on Web Analysis
for spreadsheets will not result in a reproducible corpus, as
the Internet is always in flux.

Binary Analysis: To address the limitations of Web Anal-
ysis, the Binary Analysis dataset contains 249,376 unique
spreadsheets, extracted directly from the raw data contained
within Common Crawl archives, rather than the Internet. Since
each monthly Common Crawl archive is a permanent snapshot
in time, Binary Analysis is always reproducible.

Analyzing these spreadsheets, we discovered that IF is the
most frequently used function, found in 17.8% of all formula
cells, giving evidence that spreadsheets require non-trivial
computation. We also discovered that =SUM(R[-3]C:R[-1]C)
is the most common formula, in which a cell is the sum of the
three cells to its left, and that it appears in 1,322 spreadsheets. In
contrast with domain specific corpora, such as Enron [10], our
general spreadsheet corpus has fewer formulas. Interestingly,
only 7.00% of our spreadsheets contain any formula, as opposed
to 59.4% of Enron spreadsheets, which is consistent with
anecdotal findings of the Excel team.3

This analysis hierarchy has several properties desirable
to researchers, the first of which is reproducibility. In Web
Analysis, an independent researcher should always obtain the
same set of spreadsheet-related URLs, provided they use the
same spreadsheet detection heuristic. Because the spreadsheets
from Binary Analysis are obtained from content embedded
in the Common Crawl corpus, they too are reproducible
resources. A second property of our corpus is that it is open to
extension, without sacrificing reproducibility. When Common

3Joel Spolsky writes, “Everybody thought of Excel as a financial modeling
application, [but] we visited dozens of Excel customers, and did not see anyone
using Excel to actually perform what you would call ‘calculations.’ Almost
all of them were using Excel because it was a convenient way to create a
table. [12]”

Crawl releases a new dataset, these crawls can be incrementally
incorporated into FUSE. A third useful property of our corpus
is related not to the data itself, but to its broader ecosystem:
FUSE is unencumbered by any licensing requirements, available
to all, and includes a scalable, open source toolchain.

III. METHODOLOGY

The Common Crawl is available as a public dataset on
Amazon.4 The crawl data is hosted on Simple Storage Service
(S3) as a set of WARC (Web ARChive) files, which store
the raw crawl data, and corresponding WAT files, which store
the web crawl metadata for a given WARC file. Essentially,
each WAT file contains JSON-formatted records that act as an
index into the WARC raw data. That is, each record contains a
globally unique identifier, called the WARC-Record-ID, and a
reference to a WARC filename, offset, and length. S3 supports
downloading segments of files in this way.

We examined all crawl data stored in WARC format. At
the time of analysis, this covered the period beginning with
Summer 2013 through December 2014. This period consists
of 26.83 billion web pages, compressed to 423.8 TB (1.9
PB uncompressed). To support parallelization, this data is
split into 481,427 segments, such that different machines can
independently process a segment. Extracting such a corpus
from a single desktop machine is computationally intractable,
and thus we extracted the spreadsheets using the Amazon
Elastic MapReduce service.

A. Hadoop MapReduce Pipeline

Figure 2 illustrates our MapReduce framework, which
consists of five stages that comprise a pipeline. For each
stage in the framework, we compute the cost in terms of
normalized instance hours. The total hours correspond to the
approximate amount of time that it would take for a 1 vCPU, 1.7

4http://aws.amazon.com/datasets/41740



GiB machine to complete the task — in other words, roughly
comparable to a single end-user desktop machine. Although
researchers do not need to use our pipeline to reproduce
our results, our framework already contains the necessary
MapReduce scaffolding, such as task scheduling code, as well
as Java libraries, to support distributed analysis.

1) Match: This stage required that we traverse ev-
ery JSON-formatted URL and HTTP response in the
481,427 WAT segments and match spreadsheet-related
records. First, we checked if the HTTP response pay-
load Content-Type field corresponded to one of seven
spreadsheet MIME types as supported by Microsoft Ex-
cel.5 However, some records contained a generic binary
Content-Type of application/octet-stream, in which case
Content-Disposition was checked via a file pattern matching
“.xls*”. If either of these conditions were true, we saved
the record using the WARC-Record-ID as the key. This key
identified the file throughout the pipeline. The match stage is
a heuristic process because we cannot know for sure that a
record is actually a spreadsheet until we inspect the extracted
file. After filtering through some 26.83 billion records, we
identified 2,127,284 candidate spreadsheets. This stage, the
most computationally expensive in the pipeline, required about
55,000 normalized instance hours to process.

2) Extract: The extract stage loaded the 2,127,284 candi-
date spreadsheet records. Using the Filename, Offset, and
Deflate-Length fields of the record, the corresponding WAT
record was extracted into memory. The WARC record was then
stripped of its header information (e.g., the HTTP response),
and the remaining content was saved to S3, again using the
WARC-Record-ID from the WAT file as the key. Theoretically,
this process should yield the same number of records as the
match stage; however, five records had corrupted gzip entries,
yielding 2,127,279 candidate spreadsheets. This stage required
about 1,000 normalized instance hours to complete.

3) Filter: The filter stage checked the extracted file and
tagged those that were actually spreadsheets. We used Apache
Tika6, a content analysis library, to detect the Content-Type
of the file. If this result was one of the spreadsheet MIME
types, the record was retained. During this stage, we also
computed the length (in bytes) of the spreadsheet, identified the
most appropriate file extension (e.g., “.xlsx”), and generated a
SHA-1 digest of the spreadsheet content. At this stage, 719,223
spreadsheets were retained in the pipeline, although many of
these were duplicates. This stage required about 420 normalized
instance hours to complete.

4) Plugins: The fourth stage of the pipeline is actually a
meta-stage, in which researchers can augment the framework
using plugins for their own analysis. For our corpus, we aug-
mented the JSON record with three plugins: InternetDomain,
which uses the Google Guava7 library to extract domain-related
information from the WARC-Target-URI; Apache POI8, which

5https://technet.microsoft.com/en-us/library/ee309278.aspx
6https://tika.apache.org/
7https://github.com/google/guava
8http://poi.apache.org/

obtains metrics on the content of the spreadsheets, such as
the use of functions; and LingPipe9, which extracts language-
related information from the spreadsheet. These JSON records
were all saved to S3 by their WARC-Record-ID. This stage
required about 400 normalized instance hours per plugin.
Researchers wishing to build on our approach will be able
to insert their own plugins at this stage, without having to
recompute the first three stages, saving research time and effort.
For convenience, we also retroactively ran the InternetDomain
plugin on the JSON output from the match stage to generate
the Web Analysis dataset.

5) Merge: The merge stage simply took the resulting JSON
files from all previous stages and combined them with the
original WAT record to facilitate downstream analysis. This
stage required about 130 normalized instance hours for each
plugin. The output of merge, combined with the spreadsheets
from the filter stage, comprise the Binary Analysis dataset.

B. Local Operations

We used the SHA-1 digests from the filter stage and per-
formed a local (non-MapReduce), deterministic, de-duplication
operation on the Binary Analysis. The result of this operation
was 249,376 unique spreadsheets. Locally, we also concatenated
all JSON records to a format readable by MongoDB10.

IV. DATA SCHEMA

We provide the entire data schema as JSON-formatted
records. An individual record contains the elements of the
original Common Crawl WARC record for that spreadsheet,
merged with our analysis results as the record propagated
through the pipeline (Figure 2).

The most relevant elements from the Common Crawl WARC
record are WARC-Target-URI, that is, the URL from which
the spreadsheet can be downloaded, and Container, which
indicates the Common Crawl file and offset used to extract the
spreadsheet from the raw crawl data. The WARC-Date element
may also be of interest, since it contains the time and date
of the access. Using the Content-Disposition element, one
can often extract the original spreadsheet file name.

The Tika element contains four fields related to the file
metadata, which include the MIME type, a best-guess file
extension, a SHA-1 signature, and the length in bytes of the
spreadsheet.

The InternetDomain element is useful for analysis relating
to the origin of a spreadsheet. It uses the WARC-Target-URI
and extracts the host (e.g., www.example.org), the top private
domain (e.g., example.org), and a public suffix11 (e.g., org).

Next, we provide an Alias-i LingPipe element, which
extracts the token stream (keywords) from spreadsheets, lower-
cases these tokens, removes English stop words (such as ‘a’
or ‘the’), and filters out non-words (such as numbers).

Finally, to get a high-level overview of the content of
the spreadsheets, we used Apache POI to gather spreadsheet

9http://alias-i.com/lingpipe/
10http://www.mongodb.org/
11https://publicsuffix.org/
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Fig. 3. A log-log distribution of spreadsheets in FUSE by input and formula
cell count. 28,616 spreadsheets were unreadable by our analysis tools. For
presentation clarity, the graph omits 360 spreadsheets with zero input cells
and 205,978 spreadsheets with zero formula cells.

metrics. There are over 450 such metrics, which include the
number of times a given Excel function (such as SUM or
VLOOKUP) is used, the total number of input cells (i.e., cells that
are not formulas), the number of numeric input cells, and the
most common formula used. Figure 3 shows the distributions
of formula cells and input cells across all of FUSE. Formula
cells and input cells have markedly different distributions.

V. TRADE-OFFS

In this section, we articulate the trade-offs of FUSE in
the context of other corpora that provide spreadsheets. The
EUSES corpus of 4,498 unique spreadsheets, last updated
in 2005, is obtained predominately through parsing the top-
ranked Google search results for simple keywords, such as
“finance” [9]. In contrast, FUSE has no explicit classification
for each spreadsheet, though it may be possible to infer a
classification using the LingPipe tokens. However, unlike
FUSE, EUSES is not reproducible. First, it provides no URL
information to obtain the origin for each spreadsheet. Second,
the methodology is fundamentally non-deterministic, because
Google search results are non-deterministic.

The Enron corpus contains 15,770 spreadsheets extracted
from e-mails obtained as legal evidence [10]. Unlike FUSE,
Enron is a domain-specific corpus and, consequently, each
spreadsheet contains significantly more financial formulas than
a general corpus such as ours. In the same vein, FUSE can
only offer spreadsheets that are intentionally (or inadvertently)
made publicly accessible, and as a result, may contain fewer
errors than spreadsheets not for public dissemination. On the
other hand, FUSE results suggest that formula-heavy accounting
spreadsheets are not representative of general spreadsheet users.
Finally, the Enron corpus is forever fixed. In contrast, FUSE
can accumulate new URLs and spreadsheets as new Common
Crawl datasets are made available.

One limitation is that Common Crawl restricts its storage
of binary files to 1 MB. As a result, large spreadsheets are
not available in FUSE. On the other hand, spreadsheets larger
than 1 MB make up only about 1.0% of EUSES and 2.3% of
Enron. However, if one is willing to give up reproducibility,
they may use the 292,043 distinct WARC-Target-URIs from the

Web Analysis and download them using a similar technique as
WEB [11]. One advantage of FUSE over WEB is that FUSE
contains not only the URL, but also the HTTP response, which
includes the crawl access date and Content-Type header.

Yet another limitation is that the methodology for Common
Crawl is primarily geared towards text-based HTML pages, not
binary files. Consequently, any spreadsheets within Common
Crawl are only incidental, and not by design. Finally, for various
reasons, not all plugins can analyze all spreadsheets, even when
they open in Microsoft Excel. For example, our analysis tools
do not support pre-1995 (BIFF5 format) spreadsheets, although
we still include them in the corpus.

VI. CONCLUSION

This paper contributes a spreadsheet corpus, FUSE, derived
from the Common Crawl. FUSE offers properties not available
in existing corpora, including reproducibility and extensibility.
Mining software repositories is an inherently cyclic activity:
mining data informs insights that require further mining. Our
binaries and metadata bootstrap this process, but it is only
through custom plugins developed by other researchers that
the full potential of FUSE can be realized.
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