
Identifying Successful Strategies for
Resolving Static Analysis Notifications

Justin Smith
North Carolina State University

Raleigh, NC, USA
jssmit11@ncsu.edu

ABSTRACT
Although static analysis tools detect potential code defects early in
the development process, they do not fully support developers in
resolving those defects. To accurately and efficiently resolve de-
fects, developers must orchestrate several complex tasks, such as
determining whether the defect is a false positive and updating the
source code without introducing new defects. Without good defect
resolution strategies developers may resolve defects erroneously or
inefficiently. In this work, I perform a preliminary analysis of the
successful and unsuccessful strategies developers use to resolve de-
fects. Based on the successful strategies identified, I then outline
a tool to support developers throughout the defect resolution pro-
cess.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments

Keywords
Static analysis, Strategies, Human Factors

1. INTRODUCTION
Static analysis tools help developers locate various code defects

early in the development process, even before the code executes.
For example, static analysis tools detect access control vulnerabili-
ties [13], potential null dereferences [6], and concurrency bugs [14]
by analyzing source code. Detecting and, more importantly, resolv-
ing defects like these early can prevent more costly failures later in
the development process [1].

In their defect reports, static analysis tools provide information
to developers in the form of textual notifications. These notifica-
tions typically describe possible defects. However, they often fail
to fully support developers in actually resolving the defects they de-
tect [8]. Resolving defects often requires developers to orchestrate
many interleaving activities. For example, accurately resolving de-
fects can require developers to identify false positives, explore the
existing code, invoke additional tools, modify the code, and verify
the correctness of their fix, among other activities [12]. Consider

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’16 May 14-22, 2016, Austin, TX, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4205-6/16/05.

DOI: http://dx.doi.org/10.1145/2889160.2891034

one of the most common [2] notifications produced by FindBugs, a
static analysis tool. In this case, it does not suggest how to resolve
the defect it detects:

“There is a branch of statement that, if executed, guarantees
that a null value will be dereferenced, which would gener-
ate a NullPointerException when the code is executed. Of
course, the problem might be that the branch or statement
is infeasible and that the null pointer exception can’t ever
be executed; deciding that is beyond the ability of Find-
Bugs."

While the tool identifies a problem with the code (a null value may
be dereferenced), it does not provide a suggestion for how the de-
veloper should validate and resolve the defect. The actions devel-
opers take to validate and resolve defects, I refer to collectively as
the developer’s defect resolution strategy. There are many strate-
gies for resolving a given defect. For instance, one strategy for
resolving this defect decomposes into three sub-strategies: Google
search for information about NullPointerExceptions; use Eclipse’s
call hierarchy tool to explore which branches get executed; finally,
add an additional null check.

I envision an alternative paradigm in which static analysis tools
explicate successful defect resolution strategies. To that end, this
paper makes the following contributions:

• A preliminary analysis of the successful and unsuccessful
strategies developers use to resolve defects detected by static
analysis, and

• A description of a tool that explicitly provides developers
with successful defect resolution strategies.

2. RELATED WORK
Several researchers have stressed the importance of supporting

defect resolution. For example, Path Projection [9] facilitates de-
fect resolution by presenting program path visualizations. Quick
Fix Scout [11] performs speculative analysis, enabling developers
to preview and compare fixes. Taken alone, Path Projection and
Quick Fix Scout each support only one step in the defect resolution
process. In contrast, I am working toward supporting developers
throughout every step of the defect resolution process.

Previous research has also focused on the importance of support-
ing successful strategies in the use of complex computer applica-
tions. In computer-aided design applications, for example, Bhav-
nani and John have measured the performance costs of inefficient
strategies [3]. Their results suggest the use of more efficient strate-
gies leads to faster task completion time and more accurate results.
They also show that offline educational interventions can increase
the use of efficient strategies. Leaning on the work of Bhavnani and
John, Cockburn and colleagues review interface research and state

2016 IEEE/ACM 38th IEEE International Conference on Software Engineering Companion

 662

• Participant 1: Resolve FindBugs NPE defect
• Search web for causes of NullPointerExceptions

• Open the web browser
• ...

• Determine which branches can execute
• Use `Call Hierarchy’ to navigate to conditional statements
• ...

+ Correctly identifies input that causes the branch to execute
• Fix the defect by modifying the code

• Add a null check before the pointer is dereferenced
− Code modification introduces a compilation error

Figure 1: Example strategy tree for the null dereference defect.

that knowledge of efficient strategies is also an important factor in-
fluencing the novice to expert transition [4]. In his work, Cockburn
discusses several techniques for designing interfaces that implic-
itly encourage the use of efficient strategies. These research efforts
emphasize the importance of educating users about efficient strate-
gies, however neither proposes to do so by explicitly prescribing
effective strategies to users while they complete the relevant task.
Building on this previous work, my approach aims to proliferate
strategic knowledge by explicitly describing successful strategies.

3. APPROACH
To enable tools to support developers in executing accurate and

efficient strategies, I must first identify which strategies are suc-
cessful. I conducted a study [12] in which I recorded 10 develop-
ers resolving four security defects while using Find Security Bugs
(FSB) [7] — a security-oriented extension of FindBugs [6]. In this
work I reanalyzed the audio and video recordings from [12], identi-
fying those successful and unsuccessful strategies developers used
to resolve the defects FSB detected.

Returning to the example of a defect resolution strategy from
Section 1, Figure 1 depicts the notation I used to represent defect
resolution strategies. This notation draws from the notion of attack
trees [10]. Attack trees hierarchically organize the actions an at-
tacker could take to exploit a system. Similarly, this hierarchical
representation describes defect resolution strategies as a structured
sets of actions. I refer to this notation as a strategy tree. Recur-
sively, each child of the root is itself a strategy tree representing the
sub-strategies developers used. Finally, to measure success granu-
larly, I annotated a sub-strategy in the tree whenever it either con-
tributed to or detracted from the accurate resolution of the defect
— green and red lines prefixed with +/−, respectively.

4. RESULTS
Because different developers might use different strategies to re-

solve the same defect, I constructed 40 strategy trees — one for
each top-level strategy I observed in the study. With an average
branching factor of approximately four at the roots, these 40 top-
level strategies decompose into 155 sub-strategies.

I inspected the strategies for similarity to determine the feasi-
bility of recommending strategies that apply more broadly. The
strategies I observed vary depending on the individual developer.
For example, the three developers who reported the least familiar-
ity with security vulnerabilities started 11 of the 12 tasks by read-
ing the notification text. In contrast, more experienced developers
started by reading the code. The two developers who reported the
highest familiarity with security vulnerabilities started only two of
eight tasks by reading the notification text.

Figure 2: A mockup of a tool that presents successful strategies.

Though all the strategies I identified exhibit slight differences
(such as how developers chose to start resolving the defect), some
common patterns promisingly emerged across participants and de-
fects. In all 40 strategies, developers read the code surrounding
the defect. Furthermore, in 90% of the strategies developers read
the notification text and in 75% of the strategies developers tried to
determine if the notification was a false positive.

After examining the strategies based on the degree to which they
led to successful outcomes, I observed 62 strategic failures (i.e, in-
stances where a developer’s strategy was not efficient or accurate).
For example, one developer used Eclipse’s call hierarchy tool at-
tempting to locate all the call locations of a doPost() method.
The tool located several explicit call locations within test classes.
However, it did not locate implicit calls that originated from HTML
pages. This led the developer to incorrectly conclude that the code
was safe, because users did not have access to the vulnerable method.
I observed at least one strategic failure in 27 of 40 tasks; across the
four tasks, each developer’s strategies were undermined by at least
one failure. The prevalence of strategic failures, even among the
more experienced developers, further motivates this work.

Despite the lack of tool support, some developers resolved some
defects correctly using successful strategies. I observed 105 in-
stances where developers’ defect resolution strategies successfully
led them to make observable progress on the resolution task.

Drawing from the successful strategies I observed, I sketched
(Figure 2) a tool that presents explicit defect resolution strategies
to developers. The strategy this tool presents is a composite strat-
egy, combining the 10 strategies I observed developers using for
one task. Since the developers I studied may not have executed
all of the most successful strategies, I supplement the tool by also
including defect resolution recommendations published by trusted
authorities such as OWASP and CVE [5,15]. The tool also includes
checkboxes to allow developers to track their progress. Addition-
ally, the tool exposes other tools (Open Declaration in this example)
in contexts when they would be most helpful.

5. CONTRIBUTIONS
My preliminary analysis of developers’ strategies suggests that

strategic failures may undermine developers in accurately and effi-
ciently resolving defects. I propose a new tool that helps developers
resolve defects by providing them with explicit descriptions of suc-
cessful strategies. In practice, such an approach may improve code
quality and also educate developers by increasing their awareness
of more successful strategies.1

1This work is supported by NSF grant number 131832

663

6. REFERENCES
[1] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and

W. Pugh. Using static analysis to find bugs. Software, IEEE,
25(5):22–29, 2008.

[2] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and
Y. Zhou. Evaluating static analysis defect warnings on
production software. In Proceedings of the 7th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, PASTE ’07, pages 1–8.
ACM, 2007.

[3] S. K. Bhavnani and B. E. John. The strategic use of complex
computer systems. Human-Computer Interaction,
15(2):107–137, Sept. 2000.

[4] A. Cockburn, C. Gutwin, J. Scarr, and S. Malacria.
Supporting novice to expert transitions in user interfaces.
ACM Computer Survey, 47(2):31:1–31:36, Nov. 2014.

[5] CVE. https://cve.mitre.org/.
[6] Findbugs. http://findbugs.sourceforge.net.
[7] Find security bugs. http://h3xstream.github.io/find-sec-bugs/.
[8] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge.

Why don’t software developers use static analysis tools to
find bugs? In Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13, pages
672–681. IEEE Press, 2013.

[9] Y. P. Khoo, J. S. Foster, M. Hicks, and V. Sazawal. Path
projection for user-centered static analysis tools. In
Proceedings of the 8th ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering,
PASTE ’08, pages 57–63. ACM, 2008.

[10] S. Mauw and M. Oostdijk. Foundations of attack trees. In
D. Won and S. Kim, editors, Information Security and
Cryptology - ICISC 2005, volume 3935 of Lecture Notes in
Computer Science, pages 186–198. Springer Berlin
Heidelberg, 2006.

[11] K. Muşlu, Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin.
Speculative analysis of integrated development environment
recommendations. SIGPLAN Not., 47(10):669–682, Oct.
2012.

[12] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R.
Lipford. Questions developers ask while diagnosing potential
security vulnerabilities with static analysis. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, pages 248–259. ACM, 2015.

[13] T. Thomas, J. Smith, E. Murphy-Hill, B. Chu, and
H. Lipford. A Study of Interactive Code Annotation for
Access Control Vulnerabilities. In Proceedings of Visual
Languages and Human Centric Computing, 2015.

[14] Threadsafe. http://www.contemplateltd.com/threadsafe.
[15] Owasp. http://owasp.org/index.php/Main_Page.

664

