
A Cross-Tool Communication Study on
Program Analysis Tool Notifications

Brittany Johnson, Rahul Pandita, Justin Smith, Denae Ford, Sarah Elder,
Emerson Murphy-Hill, Sarah Heckman, Caitlin Sadowski†

NC State University; Google†
Raleigh, North Carolina, USA; Mountain View, CA, USA†

{bijohnso, rpandit, jssmit11, dford3, seelder}@ncsu.edu, {emerson,
heckman}@csc.ncsu.edu, supertri@google.com†

ABSTRACT
Program analysis tools use notifications to communicate
with developers, but previous research suggests that de-
velopers encounter challenges that impede this commu-
nication. This paper describes a qualitative study that
identifies 10 kinds of challenges that cause notifications to
miscommunicate with developers. Our resulting notification
communication theory reveals that many challenges span
multiple tools and multiple levels of developer experience.
Our results suggest that, for example, future tools that
model developer experience could improve communication
and help developers build more accurate mental models.

CCS Concepts
•Human-centered computing → User studies;

Keywords
program analysis tools, human factors, communication

1. INTRODUCTION
Program analysis tools, such as static analysis tools,

refactoring tools, and code smell detectors, can ease man-
ual and sometimes tedious software development tasks by
automatically analyzing and modifying source code [1, 21].
Output from these tools, such as warnings and errors, come
in the form of textual or visual notifications that vary from
tool to tool. In our previous interviews, 20 professional
developers reported not using static analysis tools, one
type of program analysis tool, because notifications can be
difficult to interpret [15].

The goal of our research is to understand what makes
it challenging for developers to interpret program analysis
tool notifications. To motivate this goal, consider Ann, a
hypothetical professional developer. While using the Find-
Bugs [4] static analysis tool, she encounters the notification

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

Incorrect lazy initialization and update of static field javax...

managingFocusForwardTraversalKeys in javax...installDefaults()

This method contains an unsynchronized lazy initialization of a static

field. After the field is set, the object stored into that location is further

updated or accessed. The setting of the field is visible to other threads

as soon as it is set. If the further accesses in the method that set the

field serve to initialize the object, then you have a very serious

multi-threading bug, unless something else prevents any other thread

from accessing the stored object until it is fully initialized.

Even if you feel confident that the method is never called by multiple

threads, it might be better to not set the static field until the value you

are setting it to is fully populated/initialized.

Figure 1: A notification from FindBugs concerning
incorrect lazy initialization (FB2).

in Figure 1. At first glance, the concept of multi-threading
is familiar from her experience with the Java compiler.
However, she is not familiar with lazy initialization or
FindBugs, and realizes that she has to learn the terminology
used by FindBugs before she can understand the problem.
Because she has limited time and no prior experience with
lazy initialization, she enlists the help of outside resources
and hopes for a speedy resolution.

While Ann is hypothetical, her challenges are not; this
example is based on the challenges encountered by several
participants in the study described in this paper. Moreover,
the challenges are not unique to FindBugs; we found
these challenges occurred when participants used different
program analysis tools. In this paper, we describe a think-
aloud study where we asked 26 developers with varying
backgrounds to interpret notifications from three tools:
FindBugs, the Eclipse Java Compiler, and EclEmma. We
chose to study multiple program analysis tools to understand
cross-tool challenges, not just challenges with individual
tools. To identify challenges, we examined tool use through
the lens of communication theory [6, 8].

Based on existing research on how computers should
talk to people [8], the main contribution of this paper
is that it proposes an explanatory theory that describes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

FSE’16, November 13–18, 2016, Seattle, WA, USA
ACM. 978-1-4503-4218-6/16/11...$15.00
http://dx.doi.org/10.1145/2950290.2950304

73



why developers encounter difficulties when interpreting tool
notifications. Our theory encompasses 10 categories of
challenges that emerged from our study, the first cross-
tool notification study of which we are aware. We apply
our theory by presenting ways that program analysis tools
can improve communication with developers, such as by
collecting, modeling, and leveraging developer experience.

2. RELATED WORK
Existing research has focused on easing the process of

understanding and resolving notifications [13, 24, 28, 9] from
one particular tool. Rather than studying program analysis
tools separately, we believe it is more fruitful to understand
the challenges developers encounter across multiple program
analysis tools. As we describe in this section, existing studies
that examine multiple tools typically either focus on tools of
the same type (i.e. multiple compilers) or helping developers
make informed choices among tools. Our work is related
in that our findings can be used to improve the design
of tools to better support developers. Our work differs
in that we investigate different types of tools to identify
common challenges developers encounter when interpreting
notifications across tools.

Much of the research on improving developers’ ability
to interpret tool notifications has focused on compiler
notifications [13, 34, 5]. Hartmann and colleagues developed
a social recommender system, HelpMeOut, to better
assist novices with understanding and resolving compiler
notifications [13]. They found their tool provides useful
fixes about half of the time. Traver investigated why
developers have difficulty with compiler notifications and
ways to improve compiler notification design [34]. Based on
his findings, Traver developed compiler notification design
principles, which includes using consistent messages and
including more visual aids.

Muşlu and colleagues developed Quick Fix Scout, an
extension to Eclipse Quick Fix, to ease the process of
determining an optimal fix [24]. They found programmers
could more quickly assess and apply quick fixes when able
to easily reason about fix trade-offs. Barik and colleagues
studied how developers reason about compiler notifications
to improve tool support for understanding and resolving tool
notifications [5]. Compiler notifications are not the only
type of notifications a developer might encounter, further
supporting the need for cross-tool investigations. Studying
tool notifications across tools, as we have, increases the
likelihood our findings can generalize to a variety of tools.

Cross-tool studies that do exist focus on helping develop-
ers decide what tools to use rather than tool improvement.
Mettrey evaluated five expert systems tools on factors such
as performance, to aide developers in selecting one for their
projects [20]. Wagner and colleagues compared two analysis
tools that detect defects to evaluate their efficiency [35].
Other tool evaluations have had the same goal [32, 38].

Though to our knowledge there are no studies that explore
the applicability of communication theory to tool use, there
are studies that explore the applicability of other theories
to tool use [5, 36, 30]. One is our prior work on how
developers visualize compiler messages; we found that self-
explanation theory can be used to explain how developers
work through compiler error messages [5]. In other prior
work, we used Diffusion of Innovation theory to explore
factors that influence security tool adoption [36]. Similarly,

Rienmenschneider and Hardgrave explored why tools do not
get used using the Technology Acceptance Model, based
largely on the Theory of Reasoned Action [30]. Lawrance
and colleagues used information foraging theory to propose
a theory of information foraging for how programmers
navigate code when debugging [17]. In contrast, we apply
communication theory to understand the challenges devel-
opers encounter when interpreting tool notifications.

3. METHODOLOGY
We next describe our study design. Our research materials

are available on-line to aid other researchers in replication
and exploration.1

3.1 Research Question
In a previous study, we asked developers to recall expe-

riences with static analysis tools and briefly use FindBugs.
We found that some developers do not use static analysis
tools due to difficulty interpreting the notifications tools
use to communicate [15]. To find out how tools could
better communicate with developers, our study is designed
to answer the question: Why do developers encounter chal-
lenges when interpreting program analysis tool notifications?
Using Hannay and colleagues’ guidelines [12], we frame our
question as why rather than what to support our building of
a theory that explains the challenges developers encounter.

3.2 Participants
We recruited twenty-six participants using mailing lists,

classroom recruitment, and personal contacts. Participants
include undergraduate students, graduate students, and pro-
fessional developers, with varying amounts of development
and tool usage experience. Figure 2 shows the distribution of
participants’ development experience, based on self-reports
in a pre-study questionnaire. Increasing participant num-
bers indicate increasing software development experience,
and throughout the paper, we use boxes or partial boxes
to indicate participant job roles (professional, graduate,
and undergraduate respectively). For example, the figure
indicates that P24 is a professional developer with fifteen
years of development experience. Three graduate students (
P15 , P18 , P22 ) reported having industry experience. Ten
participants had prior experience using EclEmma. Nineteen
participants had prior experience with FindBugs. All
participants had experience with the Eclipse Java compiler.

3.3 Program Analysis Tools Investigated
Our study focuses on tools that can be used in the Eclipse

Integrated Development Environment (IDE) [44]. We chose
Eclipse because it is one of the most widely used IDEs [11],
making it easier to recruit qualified participants, and be-
cause it is compatible with a variety of tools. We selected
FindBugs, the Eclipse Java Compiler, and EclEmma as
mature, popular tools.

FindBugs
FindBugs (version 2.0) notifications communicate with the
developer about defects in her code based on code patterns.

Bug icons ( ) in the gutter are colored red to indicate the
“scariest” code patterns, orange for “scary” patterns, yellow
for “troubling” patterns, and blue for “of concern.” Text

1http://www4.ncsu.edu/˜bijohnso/esnpat.html

74



16 171320

P9

P10

P12P8      

P6

P7

P14 P16 P17 P19 P21

P24P13

P4 P26

P20

1 7 8 9 10 15141211 18 years

P2      

P1      

P25P23P11

P15 P18

P22

Undergraduate                       Graduate                       Professional 

3 654

P5

P3

Figure 2: Distribution of participants’ years of development experience.

(a) Source Code

Nullcheck of e at line 605 of value previously dereferenced in javax.-

swing.text.DefaultStyledDocument.getParagraphElement(int)

(b) Short Description

A value is checked here to see whether it is null, but this value can’t

be null because it was previously dereferenced and if it were null a null

pointer exception would have occurred at the earlier dereference.

Essentially, this code and the previous dereference disagree as to

whether this value is allowed to be null. Either the check is redundant

or the previous dereference is erroneous.

(c) Full Description

Figure 3: A notification of a previous null check from
FindBugs (FB4).

descriptions are available by hovering over or clicking the
icon as seen in Figure 3.

Eclipse Java Compiler
Eclipse Java compiler (JDT version 3.8) notifications com-
municate with developers when their program cannot com-
pile and provide warnings about suspicious code [40]. No-
tifications are typically shown as squiggly underlines in the
editor. Like FindBugs, the compiler uses color to represent
severity; errors are shown as red underlines, warnings as
yellow underlines. Underlines are augmented with gutter

icons ( ), as shown in Figure 4 at line 159. When the

developer mouses over the underlined code or the icon,
the notification displays a text description (Figure 4(b)).
Unlike FindBugs, clicking the gutter icon does not provide
a detailed description. Instead, clicking the icon sometimes
provides possible fixes that can be automatically applied to
the code called quick fixes.

EclEmma
EclEmma (v2.2) is a code coverage tool that executes a
program, typically with JUnit as the driver [43], to commu-
nicate with the developer about code paths that did and did
not get exercised. Although EclEmma communicates about

(a) Source Code

The type new AbstractInterrruptibleChannelInterruptible()

must implement the inherited abstract method new AbstractInterr-

uptibleChannel.Interruptible.interrupt()

(b) Text Description

Figure 4: An Eclipse compiler notification about
unimplemented methods (CMP5).

(a) Source Code with Highlighting

1 of 2 branches missed

(b) Text Description

Figure 5: An EclEmma notification about partial
branch coverage (ECL3).

one particular execution, as with the other tools it provides
information to the developer regarding code (during runtime
rather than compile-time). EclEmma uses highlighting
to indicate code execution; code highlighted in green was
executed, red was not executed, and yellow was partially
executed. Figure 5 shows an example of coverage reported
by EclEmma on an if statement. When the developer

mouses over the icon, the tool notifies her of how many
paths got executed on the associated branch statement at
line 133 (Figure 5(b)).

These tools may seem quite different, but we chose
them specifically to identify challenges developers experience
across tools. Despite the differences, these tools attempt to
communicate similar concepts to developers using similar
textual and visual notifications. For example, both Find-
Bugs and EclEmma communicate information about control
flow, and both FindBugs and the Eclipse Java Compiler
communicate about data flow. All three tools use color
codes in a largely consistent manner, such as using red to
indicate the highest level of urgency. And as a final example,
most notifications communicate information about program
elements, such as methods and classes, and information
about program execution, be it potential or actual.

75



Table 1: Notifications used in our study
Notification Tool Problem Category
FB1 FindBugs String comparison using == or != Pointers/References
FB2 FindBugs Incorrect Lazy Initialization Multi-threading
FB3 FindBugs Synchronize on mutable field Multi-threading
FB4 FindBugs Redundant null check Null/Pointers/References
FB5 FindBugs Possible null pointer dereference Null/Pointers/References
CMP1 Eclipse Compiler Unused code Dead Code
CMP2 Eclipse Compiler Unchecked Conversion, Raw Type Generics
CMP3 Eclipse Compiler Unimplemented methods Inheritance/Polymorphism
CMP4 Eclipse Compiler Serializable class needs serial ID Serialization
CMP5 Eclipse Compiler Unimplemented methods Inheritance/Polymorphism
CMP6 Eclipse Compiler Method not applicable for arguments Inheritance/Polymorphism
ECL1 EclEmma Red class with red class header Class/test coverage
ECL2 EclEmma Red class (constructor only) Class/test coverage
ECL3 EclEmma Simple if statement Branch/test coverage
ECL4 EclEmma Return statement with branches Branch/test coverage
ECL5 EclEmma Try/Catch/Finally (coverage varies) Test coverage, Exception handling
ECL6 EclEmma Nested if statements Branch/test coverage

3.4 Study Protocol
Each session with a participant lasted approximately one

hour. Prior to each session, we asked participants to fill out a
consent form and pre-questionnaire.2 Each session consisted
of seventeen tasks.

Source code for the tasks came from OpenJDK [45] and
JFreeChart [42]. We chose Open JDK because it has a large
code base from which we could easily find bugs using their
publicly available FindBugs cloud report [39]. We chose
JFreeChart because it is a large code base with working
JUnit test cases that exhibit less-than-perfect code coverage.

For each task, we presented participants with and asked
them to interpret one or more notifications from a given
tool. We disallowed the use of a web browser to isolate the
challenges developers encounter to the notifications used by
the tools and to exclude challenges caused by outside tools.
Allowing use of the browser would have added data that
does not help answer our current research question. We also
wanted to see if developers could interpret tool notifications
without the aid of web resources. During many tasks, and
at least once for every participant, participants discussed or
completed notification resolution. We did not require them
to do so, since it would be unfair to ask them to resolve a
notification if they did not understand it. As participants
explained the notifications, the first author asked follow-up
questions as necessary.

Table 1 shows a list of the notification tasks participants
encountered during each session. For each task, we chose
notifications to represent the types of notifications develop-
ers may encounter when programming. For FindBugs and
the Eclipse compiler, we chose notifications that appeared
frequently in the OpenJDK project. We chose EclEmma
notifications from JFreeChart to exercise a range of its
coverage scenarios. Because EclEmma’s documentation
does not specify the range of notifications it uses, the first
author manually went through JFreeChart’s codebase after
running the tool and took note of each new coverage scenario
encountered. We then included an example of every coverage
scenario in the EclEmma tasks.

For FindBugs, each task during the session corresponded

2This work was approved under IRB No. 2787.

(a) Source Code

- Type safety: The expression of type Vector needs unchecked conversion

to conform to Vector<String>.

- Vector is a raw type. References to generic type Vector<E>

should be parameterized.

(b) Text Description

Figure 6: A notification from the compiler about
generics (CMP2).

to a single notification. All but one compiler task corre-
sponded to a single notification; because the two notifica-
tions on CMP2 (Figure 6) contribute to the same problem
on the same line, we presented them as one task. Each
EclEmma task consisted of participants explaining coverage
notifications for the entire class.

3.5 Data Collection
We recorded audio and the screen in each session for

analysis. We then created transcripts from the audio, and
included descriptions of actions that a participant performed
that were relevant to interpreting the notification. For
example, if a participant navigated to different parts of
the code but did not explicitly describe it, we added a
description of that navigation to the transcript.

3.6 Data Analysis
We analyzed each session using open and selective cod-

ing [7] to discover participant challenges. To identify
a challenge, we needed concrete criteria. We propose
that tool use is a form of communication, and therefore
that challenges when interpreting a notification can be
seen as ineffective communication. Existing research on
how computers should talk to people suggests that if an
explanation is required for a message to be understood,

76



the message was not effective [8]. We used this logic to
determine when a challenge occurred, using three criteria for
inclusion: 1) the participant explicitly states a challenge, 2)
is unable to explain the notification, or 3) has to take steps,
outside of reading the notification, to deduce the problem.
Whether an observation met a criterion is independent of
whether the participant was able to explain the notification.

The first and second authors individually used open
coding on each transcript, labeling portions that mapped
to a challenge. We then reconvened to merge our codes.
The criteria above guided this process; if we could not
agree that a code fit our criteria, we removed it from our
data set. Of the 404 codes we originally extracted, we
disagreed on 82 (20%) from twenty-six sessions. To resolve
our disagreements, we referred to our criteria; if we could
not come to an agreement regarding the code fitting the
criteria, we removed the statement from our data set. For
four sessions, we had no disagreement. In the end, we
identified 322 codes. We put each code onto a note card,
along with the participant and tool being used.

Next, we used a card sorting methodology similar to that
of Muşlu and colleagues [23]. The goal of our card sort was
to identify themes based on our codes. We used five of the
eight authors on this paper and completed the card sort
in three phases. In phase 1, we sorted all cards into high-
level themes; each card could only go in one theme. Phase
2 focused on determining where high-level themes could be
broken down into lower-level themes. In phase 3, we focused
on making sure that each card was in the best fitting theme.
During this phase, we also clarified theme definitions and
made note of example statements to represent each theme.

Because one of our criteria is participant inability to
explain a notification, any actions or statements made
surrounding that occurrence was included in our card sort.
Upon reflection, some emergent themes took the form of
consequences rather than challenges, such as notification
resolution without understanding and lack of trust in the
tool, therefore we do not discuss them in this paper. We
likewise do not discuss the emergent theme of tool feature
requests. These excluded themes are available with our
other on-line research materials.

3.7 Study Credibility & Findings Validation
There are inherent threats to the validity of empirical

research [27]. Despite these inherent threats, prior research
suggests there are ways we can increase confidence in the
credibility and validity of our findings [10, 18]. Following
the safeguards for conducting empirical research proposed
by Li [18], we ensured the following in the collection,
interpretation, and reporting of our data:

• Voluntary participation and anonymity. To receive
truthful responses from participants, we provided par-
ticipants up-front with information regarding the pur-
pose of the study, what will happen with the data, and
how anonymity will be ensured.

• Purposeful sampling. To sample with the purpose
of gathering diverse participants and to increase the
ability to generalize findings, we recruited participants
from academia and industry with varying levels of
programming experience.

• Triangulation. To increase reliability, we triangulated
data from direct observation and think aloud.

• Prolonged engagement. To allow participants time
to get acclimated to a researcher being present while
not getting too fatigued to contribute data, each
of our sessions lasted about one hour. To increase
the effectiveness of this safeguard, the researcher
interrupted as little as possible.

• (Near-) Natural situation. To increase ecological
validity, we set up our environment and recruited
participants familiar with that environment and pro-
gramming language. We also allowed participants to
explore the code as they would if it were their own.

• Peer debriefing, stepwise replication, and interrater
reliability. To ensure researcher agreement about
the findings, two authors separately analyzed the
transcripts for statements of interest. We also included
multiple researchers throughout the multi-step analy-
sis and reporting process.

• Member checks. To ensure validity of the data and
our interpretation, we reached out to all participants,
providing them with a summary of our findings, a
copy of the written report, and a form for providing
feedback on our findings.

• Thick description. To enable judgment of how our
research fits with other contexts, we describe in detail
the methods used to collect our data and the setting
in which it was collected.

Other safeguards include Training for subjects, Back-
ground checks, and Refrain from generalizing. We did not
conduct training for think aloud, as it could have affected
our ability to recruit participants. We used criteria for
participation as a background check and do not generalize
outside the context of software developers.

4. RESULTS

4.1 The Theory
Experts in qualitative research suggest that rather than

presenting a set of disparate findings, qualitative researchers
should instead produce an explanatory theory, a “skeleton
or framework that explains why things happen” [7]. While
explicitly putting forward theories is rare in software engi-
neering [12], one example is Lawrance and colleagues’ theory
of how programmers navigate code during debugging [17].
In the same way that Lawrance and colleagues’ build
on information foraging theory [29], our theory builds on
communication theory [6]. We summarize our notification
communication theory as:

The challenges developers encounter when inter-
preting tool notifications are caused by gaps and
mismatches between developers’ programming
knowledge, based on their individual experiences,
and methods used by notifications to communi-
cate information about developers’ source code.

We define software development knowledge as any knowl-
edge relevant to understanding, writing, or maintaining
software, such as defect resolution. The challenges that
comprise our theory are shown in Figure 7. Vertical
lines represent the tasks and the horizontal bars indicate

77



FB1 FB2 FB3 FB4 FB5 CMP1 CMP2 CMP3 CMP4 CMP5 CMP6 ECL1 ECL2 ECL3 ECL4 ECL5 ECL6

General
Problem
Description
Mismatches

Problem
Resolution
Gaps

General
Knowledge
Gaps

Conceptual
Knowledge
Gaps

Visual
Communication
Mismatches

Consistent
Communication
Mismatches

Problem
Importance
Gaps

Familiar
Communication
Mismatches

Information
Salience
Mismatches

Notification
Experience
Gaps

FindBugs Eclipse Java Compiler EclEmma

Knowledge
Mismatches

Knowledge
Gaps

P1 P11 P12 P13 P14 P15 P16 P17 P18 P19P2 P21 P23 P24 P26P3 P5 P8 P9

P1 P17 P18 P20 P24 P26P3 P5 P6

P1 P11 P13 P14 P17 P18 P19 P20 P21 P23 P24 P25 P26P3 P4 P9

P1 P14 P23 P24P3 P5

P1 P11 P12 P13 P14 P15 P16 P17 P18 P19P2 P21 P22 P23 P24 P25 P26P4 P5 P6 P8 P9

P1 P11 P14 P16 P17P2 P22 P24 P25P3 P5 P6

P11 P12 P13 P15 P18 P19 P21 P23 P26P3 P4 P5 P8

P12 P13 P14 P17 P18 P19 P21 P23 P24 P25 P26

P13 P21 P26

P13 P21 P26

FB1 FB2 FB3 FB4 FB5 CMP1 CMP2 CMP3 CMP4 CMP5 CMP6 ECL1 ECL2 ECL3 ECL4 ECL5 ECL6

General
Problem
Description
Mismatches

Problem
Resolution
Gaps

General
Knowledge
Gaps

Conceptual
Knowledge
Gaps

Visual
Communication
Mismatches

Consistent
Communication
Mismatches

Problem
Importance
Gaps

Familiar
Communication
Mismatches

Information
Salience
Mismatches

Notification
Experience
Gaps

FindBugs Eclipse Java Compiler EclEmma

Knowledge
Mismatches

Knowledge
Gaps

Hide/Display Details

Figure 7: Distribution of challenges encountered and notifications that caused them.

challenges. The area of the dots indicate how many
participants encountered challenges with that notification
in that theme. Diagonal lines map participants to the
challenges interpreting that notification. When opened
in Adobe Acrobat, clicking “Hide/Display Details” inter-
actively toggles between showing and hiding this mapping.
We describe each challenge type, and our validation of our
findings, in detail in the remainder of this section.

4.2 Knowledge Gaps
Knowledge gaps occurred when there was a gap between

what participants know and the information provided by
the notification. We speak about knowledge here and
throughout as the culmination of experiences [16, 3]. Knowl-
edge gap challenges occurred when participants did not
have existing knowledge of software development activities
relevant to a given notification. However, we found it is
not as simple as “beginners battle and experts excel”, but
instead that challenges can occur regardless of programming
or industry experience. In this subsection, we describe
general knowledge gap challenges, followed by four specific
kinds of knowledge gaps we identified from our study.

4.2.1 General Knowledge Gaps
General knowledge gap challenges occurred when there

was a gap between the general software development knowl-
edge participants have relevant to the notification and the
information provided by the notification. When participants
did not provide enough information for us to map a challenge
to a more specific kind of knowledge gap, we placed that
challenge in this theme. Participants experienced knowledge
gap challenges across all three tools (Figure 7).

FindBugs was more dominant in this theme than the
compiler, with 9 and 2 participants encountering challenges
respectively. This was the case, despite the compiler using
less text than FindBugs to communicate. Participants
focused on the text to understand the problem, but struggled
to understand what the tool was trying to convey. Despite
FindBugs’ verbosity, as stated by 4 participants, the tool
provided just enough to need to use the web to figure out
the problem. For example, P25 struggled to interpret FB3.
He made an effort to understand the notification, but then
realized the notification did not provide enough for him to
feel confident in his explanation, stating:

78



I would definitely want to correct it but I don’t
get enough info from here to know what to
correct or what I did wrong so I would probably
take this message and go to Google to see if
anybody else is talking or saying something that
I understand better.

Participants who struggled with compiler and EclEmma
notifications found themselves in a situation similar to P17
when interpreting CMP4 and notifications in ECL1. When
he encountered CMP4 and ECL1, he immediately realized
the notifications did not provide enough information for him
to come to a conclusion about each. He noted, like P25 ,
that he would need to use Google or documentation to better
understand the notification being provided. P17 was unable
to come to a conclusion regarding either notification.

Our findings confirm that more is not always better [25] for
closing knowledge gaps and that these gaps exist with visual
communication as well. Along with general knowledge gap
challenges, we discuss four specific types of knowledge gaps
that emerged and led to challenges for participants.

4.2.2 Conceptual Knowledge Gaps
Conceptual knowledge gaps occurred when there was

a gap between participants’ knowledge of programming
concepts, like serialization, present in the notification and
the information provided by the notification regarding those
concepts. P24 , a professional developer with 15 years of
experience, attempted to work through CMP4 despite his
unfamiliarity with serialization. His guess, based on the
notification, was that he was missing a serialversionUID;
however, beyond that he was unsure how a serialver-

sionUID is associated with serialization. This led to the
inability for P24 to fully interpret the notification.

P5 encountered challenges interpreting FB2 due to
conceptual knowledge gaps regarding multi-threading. The
notification spoke about concepts such as lazy initialization,
which P5 noted he had not had past experience with.
Therefore, he could only guess what was wrong with the
code.

Conceptual knowledge can also affect visual communi-
cation, even when the relevant concepts are not depicted
in the notification. Test coverage is the obvious concept
necessary to understand test coverage notifications. Some
of the notifications participants encountered from EclEmma
required knowledge of other concepts, such as exception han-
dling. Three participants noted they could not confidently
explain EclEmma notifications involving finally blocks
using the visuals provided due to their minimal experience
with finally blocks.

After completing ECL5, most participants could at least
vaguely explain the notifications they encountered. How-
ever, P5 still could not definitely conclude anything about
the notifications, stating:

I don’t know what finally means but it seems
like everything inside try is not getting called. . . I
assume finally is similar to catch but I don’t
really know how finally works.

His lack of knowledge regarding finally blocks made it
challenging for P5, despite his familiarity with other

relevant code structures3. This, coupled with being his first
3The reader may also find this confusing, but this was

experience with EclEmma notifications, led to his inability
to interpret the notifications in ECL5.

4.2.3 Notification Experience Gaps
Notification experience gaps occurred when there was a

gap between participants’ knowledge gained from experience
with a notification they encountered for the first time and
the notifications they have previously encountered. Their
lack of experience with the notification is the knowledge
gap that caused challenges in this theme. For example,
P21 struggled to interpret the notifications in ECL2 due
to the differences in highlighting on uncovered methods and
constructors. His comments suggested that he understood
the concept of coverage, but stated that the challenge
was due to unfamiliarity with the tool. When he first
encountered an uncovered method notification, without
the signature highlighted like a constructor’s signature is,
he could not determine whether lack of highlighting was
equivalent to red highlighting. The challenges in this
theme are general in that they relate to overall notification
knowledge. Some of the challenges that emerged relate to
gaps in knowledge regarding notification specifics, such as
importance and resolution. We discuss those next.

4.2.4 Problem Importance Gaps
Problem importance gap challenges occurred when there

was a gap between participant knowledge of the importance
of the problem and the notification’s attempt to communi-
cate importance. As P18 attempted to explain FB3, he
realized that although the notification does tell him that he
is synchronizing on a mutable field, it does not tell him why
that is undesirable. He attempted to determine a reason for
why it is undesirable, and though he found the notification’s
message“unlikely to have useful semantics”helpful, he noted
that his reasoning “would not be correct” because he would
have to guess.

Without an understanding of why the problem was bad,
participants could not confidently interpret the notification;
this led to challenges coming up with resolutions. For
example, P5 could not confidently resolve CMP4; the
notification was clear that a missing serialversionUID is
the problem, but did not specify why the ID was needed.
Though the compiler provides quick fixes, deciding which
fix is best for P5 was dependent on what the ID is used for,
which the notification does not specify.

4.2.5 Problem Resolution Gaps
Problem resolution gap challenges occurred when there

was a gap between what the participant knows about
resolving a notification and the resolution suggested by
the notification. Most often this gap was present because
the notification did not include information specific to
resolution. When participants did not know how to fix
a notification, they had to guess how they might fix it
or, as P20 noted, “Google it to make sure” they fully
understood the notification and how to fix it. The downside
to this approach is that it takes developers into a form

a design decision made by EclEmma’s toolsmiths. This
confusion arises from a difference between the bytecode
representation and the source code representation of
finally blocks (https://github.com/jacoco/jacoco/issues/
15). Although this may seem like a design problem, we
included the notifications we did, including ECL5, because
they are encountered in the wild.

79



of information foraging that involves leaving their working
context [2], which P13 explicitly stated:

Anything that deviates my train of thought from
the task at hand. . . that’s the last thing you want
when writing code.

The notifications that do provide a fix description did
not provide a clear description of the fix or how to ap-
ply it; without the required knowledge, filling this gap
was difficult for participants. This was most often the
case with the compiler, which provides quick fixes with
minimal explanation attached. Two participants struggled
with understanding and resolving CMP4. Both appeared
confident that something was missing and that they should
add the serialversionUID. However, neither knew what a
serialversionUID is or how it should be used.

Sometimes notifications provided multiple options for
resolution but did not provide information regarding which
resolution was most appropriate. This left participants with
the task of determining the best fix to apply. For example,
CMP4 offers multiple fix possibilities, each with its own set
of code changes and possible side effects. P26 spent time
sorting through and discussing the options for fixing CMP4.
Because the tool did not provide information regarding the
pros and cons of a each fix, he was unable to explain how he
would resolve the notification.

4.3 Knowledge Mismatches
Knowledge mismatch challenges occurred when there

was a mismatch between how participants’ expected a
notification to communicate, based on their knowledge,
and how the notification communicated. Unlike knowledge
gap challenges, participants had knowledge relevant to the
notifications and concepts. However, they encountered
challenges when attempting to use their knowledge to
interpret the notification. As with knowledge gaps, we
describe General Knowledge Mismatch challenges, followed
by discussion of four specific kinds of knowledge mismatches
we identified from our study.

4.3.1 General Problem Description Mismatches
General problem description mismatches occurred when

there was a mismatch between the way the participant would
textually describe the problem and the description provided
by the notification. Although other challenges relate to
notification text, for General Problem Description Mismatch
challenges, it was unclear what about the description partic-
ipants found confusing. However, it was clear that the text
was not communicating in a way that participants’ could
use their knowledge to reconcile. This is related to research
on compiler messages conducted by Traver that suggest
unambiguity of language is important [34]. Similarly, O’Neil
discussed the importance of language considerations in data
breach notifications [26].

Representative of textual communication mismatch chal-
lenges is P16 ’s experience interpreting FB5. After reading

the text provided by the notification, P16 could not come
to a definite conclusion regarding the problem, stating:

It didn’t confirm or deny what I thought because
the wording of the [tool tip] was not quite how I
would have described it. . .

Participants encountered similar challenges with the com-
piler. P17 , for example, went back and forth between the
text of CMP3 and information provided via quick fixes as
he tried to understand the problem. He was able to guess,
based on his knowledge, what the problem might be but had
to move away from the text of the notification to come to any
sort of conclusion about the problem being communicated.

For some participants, the language used was familiar
but not something they could quickly recollect. P3, for
example, saw the word “mutable” in FB3 and he could not
remember what mutable means. After P5 read the text
provided for FB3, he explained that the use of the phrase
“useful semantics” may not have been the best choice as, for
him, terms like this “have different meanings in computer
science and the real world.”

Similarly, P5 and P24 struggled due to ambiguity in the

language used. P5 found the overall phrasing of CMP6

“weird.” P24 was more specific in stating how the language
is ambiguous. He found the use of the word “applicable”
to be odd in this context and not clearly indicative of the
message he assumes the tool is trying to communicate.

Although these textual mismatch challenges encountered
are general, specific types of mismatches with the text
portion of the notification emerged; we discuss those below.

4.3.2 Information Salience Mismatches
Information salience mismatches occurred when there

was a mismatch between the information a participant
thinks is most relevant and the information the notification
makes salient. This aligns with McCrickard and Chewar’s
suggestion that general computer users are dissatisfied with
notification systems because of mismatched information
prioritization [19].

Representative of these challenges is P13 ’s attempt to

interpret FB2 (Figure 1). P13 read the tooltip for FB2
but did not find anything useful; he saw “update of static
field” but was not certain what the tool was trying to
communicate. After digging deeper, he found that the
tool eventually elaborates on what is wrong with where
and how the field of interest is set when working with
threads. This was what he was looking for, as it helped
him understand why it is a “very serious multi-threading
bug,” as the notification states. For him, and the other
participants who encountered challenges in this theme, the
most easily available information was not so useful, leaving
them unsure of what the problem is in the code and why
it is a problem. The critical pieces of information, such
as that it is a multi-threading problem concerning where
synchronization is placed, got buried.

We only observed this phenomena with more experienced
developers; this suggests that more experienced developers
may have more concrete expectations of what information
the tool should provide. On the flip side, less experienced
developers may not know when important information is
buried because they are unsure of what the important
information is. Therefore, less experienced developers did
not appear to encounter challenges in this theme.

4.3.3 Visual Communication Mismatches
Visual communication mismatches occurred when there

was a mismatch between how the participant would com-

80



Figure 8: A notification from EclEmma regarding
finally coverage (ECL5).

municate with other developers about the notifications and
the visual elements used by the notifications. For these
challenges, it was clear there was a mismatch between what
participants expected and what the tool presented them
with, but there was no indication by participants of what
specifically caused the mismatch.

For fourteen participants, EclEmma’s attempts to com-
municate finally block coverage in ECL5 (Figure 8) failed
because it was not obvious, based on their mental model
of how finally blocks work, how a finally block can be
missed or the code inside a finally block can be partially
covered. For example, P24 had expectations regarding
how EclEmma might communicate coverage of a finally

based on prior experience with the construct that suggests
it always executes. Rather than exploring more, P24 noted
he does not understand the way the tool communicates.

Seven participants had expectations regarding how try

blocks work that did not match how EclEmma reports try

block coverage (ECL5). For example, as P23 sorted through
the notifications in ECL5, he wanted to know which line
failed to cause the try block to not execute. Attempting to
interpret the notification, he stated:

In order for the catch statement to be activated
I would imagine that this code had at least been
evaluated.

His expectation, based on his knowledge of the code
construct, was that if the try did not execute, there is a
line of code at fault. However, contrary to his expectations,
EclEmma highlights the entire try block red if an exception
is thrown, which makes it unclear whether the try executed
at all, and if it did, where an exception was thrown.

Five participants got confused by EclEmma’s lack of
textual information. Participants probably noticed this be-
cause both FindBugs and the compiler provide supplemental
textual information when markers, similar to the ones
provided by EclEmma, were clicked; in fact, markers and
notifications from other tools within EclEmma’s interface
was sometimes a distraction for participants looking for
information regarding code coverage. As P4 accessed the
information provided by notifications in ECL6, he noticed
and explored the availability of multiple markers providing
information. Some of these markers came from other tools;
none provided P4 with “any details about the coverage
part,” so he was not sure why they were present.

These expectation mismatch challenges are general and fo-
cus on visual communication. Participants also encountered
related, but more specific knowledge expectation mismatch
challenges. We discuss those next.

4.3.4 Consistent Communication Mismatches
Consistent communication mismatches occurred when

there was a mismatch between the consistency expected
by the participant and the inconsistencies in how the
notifications communicated similar problems. Prior research

suggests that within-tool-consistency is an important factor
for developers when interpreting and addressing compiler
messages [34]. Our results suggest that experiences affect
perception of consistency and that this phenomena general-
izes to visually-enriched notifications in other types of tools.

Five participants encountered challenges caused by incon-
sistencies in how EclEmma reports coverage on branching
structures. Under the assumption that yellow highlighting
was accompanied by a textual description (i.e. 1 of 2
branches missed), participants often struggled to interpret
notifications like the one in Figure 8. P6, among others,
spent a significant amount of time during her session trying
to interpret the notifications in ECL5. When she realized
that there were no markers available to better explain partial
coverage inside a finally block, she began looking at the
other similar notifications in ECL5. When she realized that
none of the other notifications had what she was looking
for, she summarized why she was struggling, stating “I’m
not sure what the other option could be. . . it doesn’t have
the little yellow diamond on it.”

Six participants noticed inconsistencies in how EclEmma
reported coverage on non-branching code structures. Five
of the six encountered challenges interpreting notifications
on methods and constructors. EclEmma highlights the
constructor signatures to indicate a missed constructor,
however, does not highlight a method signature when it is
not executed. For example, during P14 ’s session, he did a
lot of back and forth between EclEmma tasks to compare
notifications. As he tried to interpret the notifications
in ECL3, he reflected on and revisited ECL1 and ECL2,
where he recalled there being class, method, and constructor
coverage. He remembered the inconsistencies with how
ECL1 and ECL2 communicated coverage on these constructs
and found it to be confusing. Therefore, he could not give a
definite interpretation of any of the three.

4.3.5 Familiar Communication Mismatches
Familiar communication mismatches occurred when there

was a mismatch between participant familiarity with the
methods a notification uses to communicate about program-
ming concepts and the methods the notification used to
communicate about programming concepts When partici-
pants encountered these challenges, they often noted lack of
familiarity or the inability to easily recognize the problem.
Participants that noticed unintuitive communication tech-
niques found some for all tools. The majority of participants
(five of eleven) stated that EclEmma’s dominant use of
color to communicate code coverage was not intuitive. For
example, participants did find it intuitive to use yellow
for partial coverage in notifications like the ones in ECL3,
ECL5, and ECL6. The common problem with the other
tools involved association of the notification to the root
cause and unintuitive fix descriptions.

4.4 Member Check
To assess the validity of our interpretation of the data,

and the experiences developers have when interpreting tool
notifications, we conducted a member check. Of the seven
responses, two developers agreed with our findings and five
strongly agreed. Many found our report “interesting,” some
noting that although they may not have experienced all of
the challenges during the study, they can recall previously
encountering such challenges. When asked which challenges

81



they can relate to the most in their experiences with tools,
the most common choice was Problem Resolution Gaps (5).
The second most common responses (4) include Notification
Experience Gaps and Information Salience Mismatches, fol-
lowed by the third most common responses (3) of Conceptual
Knowledge Gaps, Visual Communication Mismatches, and
Familiar Communication Mismatches.

5. IMPLICATIONS
Current tools do not support developer knowledge gaps

(Section 4.2) and conflict with developer knowledge (Sec-
tion 4.3). We discuss several implications in this section.

Filling Developer Knowledge Gaps. Despite the expe-
rience of some participants, every participant encountered at
least one notification they could not understand. FindBugs,
the Eclipse Java Compiler, and EclEmma attempt to fill
knowledge gaps to different degrees and in different ways.
FindBugs sometimes provides definitions, examples, and fix
suggestions. The compiler provides tooltip descriptions and
often an automatic quick fix that developers can apply to
learn about notification resolution. EclEmma sometimes
provides tooltips to help developers fill knowledge gaps
concerning low test coverage.

One straightforward solution is for tools to provide more
information to developers to help fill knowledge gaps. For
example, for developers that struggled with finally block
coverage in ECL5, it may have been helpful if the tool
provided information regarding finally block coverage in
EclEmma. Or, for developers who did not know what
synchronization is, it may have been helpful to provide a
definition or code example of what it means to correctly
synchronize an object or method.

Our findings suggest tools can fill developer knowledge
gaps by consistently providing information about the options
for fixing a notification (Section 4.2.5) and reasoning for
resolution (Section 4.2.4). The Eclipse compiler makes a
consistent effort to provide fix information, however, it does
not make an explicit effort to assist developers with deciding
the best fix their code nor does it provide rationale for
resolution. Muşlu and colleagues provided one potential
solution for compiler notifications with Quick Fix Scout,
which we discussed in Section 2 [24]. Although this approach
could be applied to other tools that offer quick fixes, like
FindBugs, Quick Fix Scout prioritizes and rationalizes
based on one criteria: the number of new notifications
introduced by applying the fix. However, other criteria, such
as whether the fix uses familiar APIs, may also improve the
usability of program analysis notifications.

Matching Developer Expectations. Developer expec-
tations can have an effect on their ability to interpret
notification messages (Section 4.3). We propose that tools
can improve how they communicate to developers if they
are able to ascertain developers’ knowledge and experiences,
which inform their expectations [8]. For each notification in
our study, some developers could interpret the notification
and others could not. Therefore, it may be that providing
every developer with more information is not the best way
to support developers’ understanding of tool notifications.

If a tool could know its user’s familiarity, or unfamiliarity,
with the notifications it provides, or the concepts in those
notifications, the tool could determine how to adapt its
notifications to better fit the user’s expectations. However,

tools cannot acquire the knowledge required to build these
constructs on their own.

What if we could determine the best links to external
resources for a developer based on the concepts relevant to
the notification the developer knows the least about? Or
display information based on what is most needed or used
by the developer? One solution, modeled after intelligent
tutoring systems (ITS) [22], would be for tools to use
developer knowledge, in the form of their experiences, as
a factor when determining the information necessary for a
developer to interpret a given notification [14].

Imagine two developers, D1 and D2; D1 frequently has
developed multi-threaded environments while another, D2,
is new to multi-threading. For multi-threading experts,
like D1, extra information regarding terms and fundamental
concepts, such as lazy initialization, may not be necessary.
It may be enough to notify her and provide quick access
to a suggestion for resolving the problem; it may even be
distracting having other information available she likely does
not need. For multi-threading novices, like D2, all the
information provided could be of use; such novices may need
even more information.

ITS create student models based on assessments; we
imagine IDEs could construct a model of a developer’s
experience by observing their use of language features, tools,
and libraries in the code they write. This is similar to
the design of other kinds of notifications [19, 33, 37] and
aligns with research on recommendation systems that sug-
gests data mining and other knowledge inference techniques
can help provide previously-unknown information for task
completion [31]. There may be factors other than their
coding experience to consider for accurate models. Other
data we can collect include notifications the developer has
resolved or portions of the notification text frequently visited
or used by the developer.

6. CONCLUSION AND FUTURE WORK
We propose a notification communication theory that

program analysis tools and developers miscommunicate
because of knowledge gaps and knowledge mismatches. This
theory serves as a foundation for two major pieces of future
work. First, the theory is only proposed here; future
work is required to strengthen and refine the theory, for
example through field studies, case studies, and controlled
experiments. And second, the theory serves as a foundation
to create more effective tools and notifications. In exploring
and building these tools, we imagine a future where tools
communicate fluidly and seamlessly with developers.

Acknowledgments
Many thanks to the participants in our study for their time.
Special thanks to Robert Bowdidge, Michael Ernst, Kevin
Lubick, Allaire Welk, Olga Zielinska, and the Developer
Liberation Front [41]. This material is based upon work
supported by the National Science Foundation under Grant
No. 1217700 and 1318323, a Google Faculty Award, and a
National Science Foundation Graduate Research Fellowship
under Grant No. DGE–0946818.

7. REFERENCES
[1] S. Adolph, W. Hall, and P. Kruchten. Using grounded

theory to study the experience of software

82



development. Empirical Software Engineering,
16(4):487–513, 2011.

[2] E. M. Altmann and J. G. Trafton. Task interruption:
Resumption lag and the role of cues. Technical report,
Defense Technical Information Center, 2004.

[3] L. Argote and E. Miron-Spektor. Organizational
learning: From experience to knowledge. Organization
science, 22(5):1123–1137, 2011.

[4] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler,
J. Penix, and W. Pugh. Using static analysis to find
bugs. IEEE Software, 25(5):22–29, 2008.

[5] T. Barik, K. Lubick, S. Christie, and E. Murphy-Hill.
How developers visualize compiler messages: A
foundational approach to notification construction. In
2nd IEEE Working Conference on Software
Visualization, 2014.

[6] J. P. Bowman and A. S. Targowski. Modeling the
communication process: The map is not the territory.
Journal of Business Communication, 24(4):21–34,
1987.

[7] J. Corbin and A. Strauss. Basics of qualitative
research: Techniques and procedures for developing
grounded theory. Sage publications, 2014.

[8] M. Dean. How a computer should talk to people. IBM
Systems Journal, 21(4):424–453, 1982.

[9] T. Fritz, D. C. Shepherd, K. Kevic, W. Snipes, and
C. Bräunlich. Developers’ code context models for
change tasks. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations
of Software Engineering, pages 7–18. ACM, 2014.

[10] S. Gasson. Rigor in grounded theory research: An
interpretive perspective on generating theory from
qualitative field studies. The handbook of information
systems research, pages 79–102, 2004.

[11] G. Goth. Beware of the March of this IDE: Eclipse is
overshadowing other tool technologies. IEEE Software,
22(4):108–111, 2005.

[12] J. E. Hannay, D. I. Sjøberg, and T. Dyb̊a. A
systematic review of theory use in software
engineering experiments. Software Engineering, IEEE
Transactions on, 33(2):87–107, 2007.

[13] B. Hartmann, D. MacDougall, J. Brandt, and S. R.
Klemmer. What would other programmers do:
suggesting solutions to error messages. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing, pages 1019–1028, 2010.

[14] B. Johnson, R. Pandita, E. Murphy-Hill, and
S. Heckman. Bespoke tools: adapted to the concepts
developers know. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering,
pages 878–881. ACM, 2015.

[15] B. Johnson, Y. Song, E. Murphy-Hill, and
R. Bowdidge. Why don’t software developers use
static analysis tools to find bugs? In Software
Engineering (ICSE), 2013 35th International
Conference on, pages 672–681. IEEE, 2013.

[16] P. N. Johnson-Laird. Mental models. 1989.

[17] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy,
K. Rector, and S. D. Fleming. How programmers
debug, revisited: An information foraging theory
perspective. Software Engineering, IEEE Transactions

on, 39(2):197–215, 2013.

[18] D. Li. Trustworthiness of think-aloud protocols in the
study of translation processes. International Journal
of Applied Linguistics, 14(3):301–313, 2004.

[19] D. S. McCrickard and C. M. Chewar. Attuning
notification design to user goals and attention costs.
Communications of the ACM, 46(3):67–72, 2003.

[20] W. Mettrey. A comparative evaluation of expert
system tools. Computer, 24(2):19–31, 1991.

[21] E. Murphy-Hill and A. Black. An interactive ambient
visualization for code smells. In Proceedings of
International Symposium on Software Visualization,
pages 5–14, 2010.

[22] T. Murray. Authoring intelligent tutoring systems: An
analysis of the state of the art. International Journal
of Artificial Intelligence in Education (IJAIED),
10:98–129, 1999.

[23] K. Muşlu, C. Bird, N. Nagappan, and J. Czerwonka.
Transition from Centralized to Distributed Version
Control Systems: A Case Study on Reasons, Barriers,
and Outcomes. In Proceedings of the International
Conference on Software Engineering, 2014.

[24] K. Muşlu, Y. Brun, R. Holmes, M. D. Ernst, and
D. Notkin. Speculative analysis of integrated
development environment recommendations. ACM
SIGPLAN Notices, 47(10):669–682, 2012.

[25] M. Nienaltowski, M. Pedroni, and B. Meyer. Compiler
Error Messages: What Can Help Novices? In
Proceedings of SIGCSE Technical Symposium on
Computer Science Education, pages 168–172, 2008.

[26] F. O’Neil. Target data breach: applying user-centered
design principles to data breach notifications. In
Proceedings of the 33rd Annual International
Conference on the Design of Communication, page 47.
ACM, 2015.

[27] A. J. Onwuegbuzie and N. L. Leech. Validity and
qualitative research: An oxymoron? Quality &
Quantity, 41(2):233–249, 2007.

[28] R. Pham, Y. Stoliar, and K. Schneider. Automatically
recommending test code examples to inexperienced
developers. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering,
pages 890–893. ACM, 2015.

[29] P. Pirolli and S. Card. Information foraging.
Psychological review, 106(4):643, 1999.

[30] C. K. Riemenschneider and B. C. Hardgrave.
Explaining software development tool use with the
technology acceptance model. The Journal of
Computer Information Systems, 41(4):1, 2001.

[31] M. P. Robillard, W. Maalej, R. J. Walker, and
T. Zimmermann. Recommendation systems in software
engineering. Springer, 2014.

[32] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison
and evaluation of code clone detection techniques and
tools: A qualitative approach. Science of Computer
Programming, 74(7):470–495, 2009.

[33] D. Sow, M. Ebling, R.-P. Lehmann, J. Davis, and
L. Bergman. Scout contextually organizes user tasks.
In e-Business Engineering, 2005. ICEBE 2005. IEEE
International Conference on, pages 94 –101, oct. 2005.

[34] V. J. Traver. On Compiler Error Messages: What

83



They Say and What They Mean. Advances in
Human-Computer Interaction, 2010.

[35] S. Wagner, F. Deissenboeck, M. Aichner, J. Wimmer,
and M. Schwalb. An evaluation of two bug pattern
tools for java. In Software Testing, Verification, and
Validation, 2008 1st International Conference on,
pages 248–257. IEEE, 2008.

[36] S. Xiao, J. Witschey, and E. Murphy-Hill. Social
influences on secure development tool adoption: why
security tools spread. In Proceedings of the 17th ACM
conference on Computer supported cooperative work &
social computing, pages 1095–1106. ACM, 2014.

[37] L. Zhang, N. Tu, and D. Vronay. Info-lotus: a
peripheral visualization for email notification. In CHI
’05 extended abstracts on Human factors in computing
systems, CHI EA ’05, pages 1901–1904, New York,
NY, USA, 2005. ACM.

[38] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P.
Hudepohl, and M. A. Vouk. On the value of static
analysis for fault detection in software. Software
Engineering, IEEE Transactions on, 32(4):240–253,
2006.

[39] Findbugs cloud tutorial, 2011. https://code.google.
com/p/findbugs/wiki/FindBugsCloudTutorial.

[40] JDT core component, 2013.
http://www.eclipse.org/jdt/core/index.php.

[41] Developer Liberation Front.
http://research.csc.ncsu.edu/dlf/.

[42] JFreeChart, 2013. http://www.jfree.org/jfreechart/.

[43] JUnit 4. http://www.junit.org.

[44] Eclipse. http://www.eclipse.org.

[45] OpenJDK source releases.
http://download.java.net/openjdk/jdk8/.

84


