Questions Developers Ask While Diagnosing Potential
Security Vulnerabilities with Static Analysis

Justin Smith, Brittany Johnson, and
Emerson Murphy-Hill
North Carolina State University
Raleigh, NC, USA
{ijssmit11, bijohnso}@ncsu.edu,
emerson@csc.ncsu.edu

ABSTRACT

Security tools can help developers answer questions about poten-
tial vulnerabilities in their code. A better understanding of the types
of questions asked by developers may help toolsmiths design more
effective tools. In this paper, we describe how we collected and cat-
egorized these questions by conducting an exploratory study with
novice and experienced software developers. We equipped them
with Find Security Bugs, a security-oriented static analysis tool,
and observed their interactions with security vulnerabilities in an
open-source system that they had previously contributed to. We
found that they asked questions not only about security vulnera-
bilities, associated attacks, and fixes, but also questions about the
software itself, the social ecosystem that built the software, and
related resources and tools. For example, when participants asked
questions about the source of tainted data, their tools forced them to
make imperfect tradeoffs between systematic and ad hoc program
navigation strategies.

Categories and Subject Descriptors

D.2.6 [Software Engineering]: Programming Environments

Keywords

Developer questions, human factors, security, static analysis

1. INTRODUCTION

Software developers are a critical part of making software se-
cure, a particularly important task considering security vulnerabili-
ties are likely to cause incidents that affect company profits as well
as end users [4]. When software systems contain security defects,
developers are responsible for fixing them.

To assist developers with the task of detecting and removing se-
curity defects, toolsmiths provide a variety of static analysis tools.
One example of such a tool is Find Security Bugs (FSB) [35], an
extension of FindBugs [34]. FSB locates and reports on potential
software security vulnerabilities, such as SQL injection and cross-
site scripting. Other tools, such as CodeSonar [31] and Cover-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ESEC/FSE’15, August 30 — September 4, 2015, Bergamo, Italy

ACM. 978-1-4503-3675-8/15/08...
http://dx.doi.org/10.1145/2786805.2786812

72

Bill Chu and Heather Richter Lipford
University of North Carolina at Charlotte
_ Charlotte, NC, USA
{billchu, heather.lipford}@uncc.edu

ity [32], can also be used to detect and remove potential security
vulnerabilities. In fact, toolsmiths have created over 50, both free
and commercial, static analysis tools to help developers secure their
systems [30,39,41].

These tools provide, for instance, information about the locations
of potential SQL injection vulnerabilities. Unfortunately, despite
their availability, research suggests that developers do not use static
analysis tools, partially because the tools provide information that
does not adequately align with their information needs [11].

Our work addresses this problem by advancing our understand-
ing of developers’ information needs while interacting with a security-
focused static analysis tool. To our knowledge, no prior study has
specifically investigated developers’ information needs while using
such a tool. As we show later in this paper, developers need unique
types of information while assessing security vulnerabilities, like
information about attacks.

In non-security domains, work that identifies information needs
has helped toolsmiths both evaluate the effectiveness of existing
tools [1], and improve the state of program analysis tools [15, 28,
29]. Similarly, we expect that categorizing developers’ information
needs while using security-focused static analysis tools will help
researchers evaluate and toolsmiths improve those tools.

To that end, we conducted an exploratory study with ten devel-
opers who had contributed to iTrust [37], a security-critical Java
medical records software system. We observed each developer as
they assessed potential security vulnerabilities identified by FSB.
We operationalized developers’ information needs by measuring
questions — the verbal manifestations of information needs. We
report the questions participants asked throughout our study and
discuss the strategies participants used to answer their questions.
Using a card sort methodology, we sorted 559 questions into 17 cat-
egories. The primary contribution of this work is a categorization
of questions, which researchers and toolsmiths can use to inform
the design of more usable static analysis tools.

2. RELATED WORK

We have organized the related work into two subsections. Sec-
tion 2.1 outlines some of the current approaches researchers use to
evaluate security tools and Section 2.2 references other studies that
have explored developers’ information needs.

2.1 Evaluating Security Tools

Using a variety of metrics, many studies have assessed the ef-
fectiveness of the security tools developers use to find and remove
vulnerabilities from their code [2,21,22].

Much research has evaluated the effectiveness of tools based on
their false positive rates and how many vulnerabilities they de-

tect [2,5,12]. For instance, Jovanovic and colleagues evaluate their
tool, PIXY, a static analysis tool that detects cross-site scripting vul-
nerabilities in PHP web applications [12]. They considered PIXY
effective because of its low false positive rate (50%) and its abil-
ity to find vulnerabilities previously unknown. Similarly, Livshits
and Lam evaluated their own approach to security-oriented static
analysis, which creates static analyzers based on inputs from the
user [21]. They also found their tool to be effective because it had
a low false positive rate.

Austin and Williams compared the effectiveness of four exist-
ing techniques for discovering security vulnerabilities: systematic
and exploratory manual penetration testing, static analysis, and au-
tomated penetration testing [2]. Comparing the four approaches
based on number of vulnerabilities found, false positive rate, and
efficiency, they reported that no one technique was capable of dis-
covering every type of vulnerability.

Dukes and colleagues conducted a case study comparing static
analysis and manual testing vulnerability-finding techniques [5].
They found combining manual testing and static analysis was most
effective, because it located the most vulnerabilities.

These studies use various measures of effectiveness, such as false
positive rates or vulnerabilities found by a tool, but none focus on
how developers interact with the tool. Further, these studies do not
evaluate whether the tools address developers’ information needs.
Unlike existing studies, our study focuses on developers’ informa-
tion needs while assessing security vulnerabilities and, accordingly,
provides a novel framework for evaluating security tools.

2.2 Information Needs Studies

Several studies have explored developers’ information needs out-
side the context of security. Similar to our work, some existing
studies determine these needs by focusing on the questions devel-
opers ask [13,17,18]. These three studies explore the questions
developers ask while performing general programming tasks. In
contrast to previous studies, our study focuses specifically on the
information needs of developers while performing a more specific
task, assessing security vulnerabilities. Unsurprisingly, some of the
questions previously identified as general programming questions
also occur while developers assess security vulnerabilities (e.g.,
Sections 4.3.2 and 4.3.3).

Much of the work on answering developer questions has oc-
curred in the last decade. LaToza and Myers surveyed profes-
sional software developers to understand the questions developers
ask during their daily coding activities, focusing on the hard to an-
swer questions [18]. Furthermore, after observing developers in a
lab study, they discovered that the questions developers ask tend to
be questions revolving around searching through the code for target
statements or reachability questions [17]. Ko and Myers developed
WHYLINE, a tool meant to ease the process of debugging code by
helping answer “why did” and “why didn’t” questions [14]. They
found that developers were able to complete more debugging tasks
while using their tool than they could without it. Fritz and Mur-
phy developed a model and prototype tool to assist developers with
answering the questions they want to ask based on interviews they
conducted [6].

3. METHODOLOGY

We conducted an exploratory study with ten software develop-
ers. In our analysis, we extracted and categorized the questions de-
velopers asked during each study session. Section 3.1 outlines the
research question we sought to answer. Section 3.2 details how the
study was designed and Section 3.3 describes how we performed
data analysis. Study materials can be found online [33].

73

a4 qﬁ,‘? Scary (2)
a # Mormal confidence (2}
4 :é} Patential Path traversal (read file) {1}
:g} Aninstance of java.io.File is created to read a file, [Scary(7), Mormal confidence]

(a) Navigation

34- private List<String> parseAndCache(String filellame)

35 throws FilellotFoundException, IOException {
36 List<String» queries = parseSQLFile(filellame);
37 cache.put(filellame, queries);

3 return queries;
9)
0= private List<String> par‘seSOLFile'(Str‘ing filepath))

throws FilellotFoundException, IDException {
List<String> queries = new Arraylist<String>();
BufferedReader reader =

new BufferedReader(new FileReader(new File(filepath)));

(b) Code

%4 Bug Info 32

SQLFileCachejava: 44
+ Mavigatian

Bug: An instance of java.io File is created to read a file.
A file is open to read its content. The path given is a dynamic parameter.

(c) Short Notification Text

Figure 1: The study environment.

3.1 Research Question

We want to answer the following research question: What in-
formation do developers need while using static analysis tools to
diagnose potential security vulnerabilities? We measured develop-
ers’ information needs by examining the questions they asked. The
questions that we identified are all available online [33] and sev-
eral exemplary questions are listed in the results sections. Where
possible, we also link questions to the tools and strategies that de-
velopers used to answer their questions.

3.2 Study Design

To ensure all participants were familiar with the study environ-
ment and Find Security Bugs (FSB), each in-person session started
with a five-minute briefing section. The briefing section included
a demonstration of FSB’s features and time for questions about the
development environment’s configuration. During the briefing sec-
tion, we informed participants of the importance of security to the
application and that the software may contain security vulnerabili-
ties.

Additionally, we asked participants to use a think-aloud protocol,
which encourages participants to verbalize their thought process as
they complete a task or activity [25]. Specifically, they were asked
to: “Say any questions or thoughts that cross your mind regardless
of how relevant you think they are.” We recorded both audio and
the screen as study artifacts for data analysis.

Following the briefing period, participants progressed through
encounters with four vulnerabilities. Figure 1 depicts the configu-
ration of the integrated development environment (IDE) for one of
these encounters. All participants consented to participate in our
study, which had institutional review board approval, and to have
their session recorded using screen and audio capture software. Fi-
nally, each session concluded with several demographic and open-
ended discussion questions.

Table 1: Participant Demographics

Participant | Job Title Vulnerability | Experience
Familiarity Years

P1* Student 00000 4.5
pP2* Test Engineer (1] Jele) 8
P3 Development Tester [1 Jolele) 6
P4* Software Developer [1 Jelee) 6
P5* Student 00000 10
P6 Student @0000 4
P7 Software Developer 00000 4.5
P8 Student 00000 7
P9 Software Consultant 00000 5
P10 Student 00000 8

3.2.1 Materials

Participants used Eclipse to explore vulnerabilities in iTrust, an
open source Java medical records web application that ensures the
privacy and security of patient records according to the HIPAA
statute [36]. Participants were equipped with FSB, an extended
version of FindBugs.

We chose FSB because it detects security defects and compares
to other program analysis tools, such as those listed by NIST, [30]
OWASP, [39] and WASC [41]. Some of the listed tools may include
more or less advanced bug detection features. However, FSB is
representative of static analysis security tools with respect to its
user interface, specifically in how it communicates with its users.
FSB provides visual code annotations and textual notifications that
contain vulnerability-specific information. It summarizes all the
vulnerabilities it detects in a project and allows users to prioritize
potential vulnerabilities based on several metrics such as bug type
or severity.

3.2.2 Participants

For our study, we recruited ten software developers, five students
and five professionals. Table 1 gives additional demographic infor-
mation on each of the ten participants. Asterisks denote previous
use of security-oriented tools. Participants ranged in programming
experience from 4 to 10 years, averaging 6.3 years. Participants
also self-reported their familiarity with security vulnerabilities on
a 5 point Likert scale, with a median of 3. Although we report on
experiential and demographic information, the focus of this work
is to identify questions that span experience levels. In the remain-
der of this paper, we will refer to participants by the abbreviations
found in the participant column of the table.

We faced the potential confound of measuring participants ques-
tions about a new code base rather than measuring their questions
about vulnerabilities. To mitigate this confound, we required par-
ticipants to be familiar with iTrust; all participants either served as
teaching assistants for, or completed a semester-long software engi-
neering course that focused on developing iTrust. This requirement
also ensured that participants had prior experience using static anal-
ysis tools. All participants had prior experience with FindBugs, the
tool that FSB extends, which facilitated the introduction of FSB.

However, this requirement restricted the size of our potential par-
ticipant population. Accordingly, we used a nonprobabilistic, pur-
posive sampling approach [9], which typically yields fewer partic-
ipants, but gives deeper insights into the observed phenomena. To
identify eligible participants, we recruited via personal contacts,
class rosters, and asked participants at the end of the study to rec-
ommend other qualified participants. Although our study involved
only ten participants, we reached saturation [8] rather quickly; no

74

new question categories were introduced after the fourth partici-
pant.

3.2.3 Tasks

First we conducted a preliminary pilot study (n = 4), in which
participants spent approximately 10 to 15 minutes with each task
and showed signs of fatigue after 60 minutes. To reduce the effects
of fatigue, we asked each participant to assess four vulnerabilities.
We do not report on data collected from this preliminary study.

When selecting tasks, we ran FSB on iTrust and identified 118
potential security vulnerabilities across three topics. To increase
the diversity of responses, we selected tasks from mutually exclu-
sive topics, as categorized by FSB. For the fourth task, we added a
SQL injection vulnerability to iTrust by making minimal alterations
to one of the database access objects. Our alterations preserved the
functionality of the original code and were based on examples of
SQL injection found on OWASP [40] and in open-source projects.
We chose to add a SQL injection vulnerability, because among all
security vulnerabilities, OWASP ranks injection vulnerabilities as
the most critical web application security risk.

For each task, participants were asked to assess code that “may
contain security vulnerabilities” and “justify any proposed code
changes.” Table 2 summarizes each of the four tasks and the re-
mainder of this section provides more detail about each task.

Task 1

The method associated with Task 1 opens a file, reads its contents,
and executes the contents of the file as SQL queries against the
database. Before opening the file, the method does not escape the
filepath, potentially allowing arbitrary SQL files to be executed.
However, the method is only ever executed as a utility from within
the unit test framework. The mean completion time for this task
was 14 minutes and 49 seconds.

Task 2

The method associated with Task 2 is used to generate random
passwords when a new application user is created. FSB warns
Random should not be used in secure contexts and instead suggests
using SecureRandom. SecureRandom is a more secure alterna-
tive, but its use comes with a slight performance trade-off. The
mean completion time for this task was 8 minutes and 52 seconds.
Task 3

The method associated with Task 3 reads several improperly val-
idated string values from a form. These values are eventually re-
displayed on the web page exposing the application to a cross site
scripting attack. The mean completion time for this task was 13
minutes and 19 seconds.

Task 4

In the method associated with Task 4, a SQL Statement object is
created using string interpolation, which is potentially vulnerable
to SQL injection. FSB recommends using PreparedStatements
instead.The mean completion time for this task was 8 minutes.

3.3 Data Analysis

To analyze the data, we first transcribed all the audio-video files
using oTranscribe [38]. Each transcript, along with the associated
recording, was analyzed by two of the authors for implicit and ex-
plicit questions. The two question sets for each session were then
iteratively compared against each other until the authors reached
agreement on the question sets. In the remainder of this section, we
will detail the question extraction process and question sorting pro-
cesses, including the criteria used to determine which statements
qualified as questions.

Table 2: Four vulnerability exploration tasks

Vulnerability Short Description Severity Rank
Potential Path Traversal | An instance of java.io.File is created to read a file. “Scary”
Predictable Random Use of java.util. Random is predictable. “Scary”
Servlet Parameter The method getParameter returns a String value that is controlled by the client. “Troubling”
SQL Injection [Method name] passes a non-constant String to an execute method on an SQL statement. “Of Concern”

P: 18:11 So | want know where this is being used. |is it being passed to an SQL

going to ... | forget what forms are used for...

I'm clicking on this to select all the

Comment [J1]: Where are these variables
being used?

| Comment [BJ2]: Where is this value/variable
being used?

addRecordsRelease, [so | think that is going to become a database call at some

point,

Comment [J3]: [s this variable being passed to
a SQL query or anything else the bug warns me
about?

) { Comment [BJ4]: What are forms used for?

this method?

{ Comment [J5]: Where is the form used later in J

| Comment [B36]: Is it going to become a
database call at some point?

Figure 2: Question merging process

3.3.1 Question Criteria

Participants ask both explicit and implicit questions. Drawing
from previous work on utterance interpretation [20], we developed
five criteria to assist in the uniform classification of participant
statements. A statement was coded as a question only if it met
one of the following criteria:

e The participant explicitly asks a question.
Example: Why aren’t they using PreparedStatements?

e The participant makes a statement and explores the va-
lidity of that statement.
Example: It doesn’t seem to have shown what I was looking
for. Oh, wait! It’s right above it...

e The participant uses key words such as, “I assume,” “I
guess,” or “I don’t know.”
Example: I don’t know that it’s a problem yet.

e The participant clearly expresses uncertainty over a state-
ment.
Example: Well, it’s private to this object, right?

e The participant clearly expresses an information need by
describing plans to acquire information.
Example: I would figure out where it is being called.

3.3.2 Question Extraction

To make sure our extraction was exhaustive, the first two authors
independently coded each transcript using the criteria outlined in
the previous section. When we identified a statement that satisfied
one or more of the above criteria, we marked the transcript, high-
lighted the participant’s original statement, and clarified the ques-
tion being asked. Question clarification typically entailed reword-
ing the question to best reflect the information the participant was
trying to acquire. From the ten sessions, the first coder extracted
421 question statements; the other coder extracted 389.

It was sometimes difficult to determine what statements should
be extracted as questions; the criteria helped ensure both authors
only highlighted the statements that reflected actual questions. Fig-
ure 2 depicts a section of the questions extracted by both authors
from P8 prior to review.

75

3.3.3 Question Review

To remove duplicates and ensure the validity of all the questions,
each transcript was reviewed jointly by the two authors who ini-
tially coded it. During this second pass, the two reviewers exam-
ined each question statement, discussing its justification based on
the previously stated criteria. The two reviewers merged duplicate
questions, favoring the wording that was most strongly grounded in
the study artifacts. This process resulted in a total of 559 questions.

Each question that was only identified by one author required
verification. If the other author did not agree that such a ques-
tion met at least one of the criteria, the question was removed
from the question set and counted as a disagreement. The review-
ers were said to agree when they merged a duplicate or verified a
question. Depending on the participant, inter-reviewer agreement
ranged from 91% to 100%. Across all participants, agreement aver-
aged to 95%. The agreement scores suggest that the two reviewers
consistently held similar interpretations of the question criteria.

It is also important to note that participants’ questions related to
several topics in addition to security. We discuss the questions that
are most closely connected to security in Sections 4.2.1, 4.3.6, and
4.5.3. Although our primary focus is security, we are also inter-
ested in the other questions that participants posed, as those ques-
tions often have security implications. For example, researchers
have observed that developers ask questions about data flow, like
What is the original source of this data, even outside security [18].
However, in a security context, this question is particularly impor-
tant, because potentially insecure data sources often require special
handling to prevent attacks.

3.3.4 Question Sorting

To organize our questions and facilitate discussion, we performed
an open card sort [10]. Card sorting is typically used to help struc-
ture data by grouping related information into categories. In an
open sort, the sorting process begins with no notion of predefined
categories. Rather, sorters derive categories from emergent themes
in the cards.

We performed our card sort in three distinct stages: clustering,
categorization, and validation. In the first stage, we formed ques-
tion clusters by grouping questions that identified the same infor-

mation needs. In this phase we focused on rephrasing similar ques-
tions and grouping duplicates. For example, P1 asked, Where can
1 find information related to this vulnerability? P7 asked, Where
can 1 find an example of using PreparedStatements? and P2
asked, Where can I get more information on path traversal? Of
these questions, we created a question cluster labeled Where can [
get more information? At this stage, we discarded five unclear or
non pertinent questions and organized the remaining 554 into 155
unique question clusters.

In the second stage, we identified emergent themes and grouped
the clusters into categories based on the themes. For example, we
placed the question Where can I get more information? into a cat-
egory called Resources/Documentation, along with questions like
Is this a reliable/trusted resource? and What information is in the
documentation? Table 3 contains the 17 categories along with the
number of distinct clusters each contains.

To validate the categories that we identified, we asked two inde-
pendent researchers to sort the question clusters into our categories.
Rather than sort the entire set of questions, we randomly selected
43 questions for each researcher to sort. The first agreed with our
categorization with a Cohen’s Kappa of k = .63. Between the
first and second researcher we reworded and clarified some am-
biguous questions. The second researcher exhibited greater agree-
ment (x = .70). These values are within the .60 — .80 range,
indicating substantial agreement [16].

4. RESULTS
4.1 Interpreting the Results

In the next four sections, we discuss our study’s results using
the categories we described in the previous section. Due to their
large number, we grouped the categories to organize and facilitate
discussion about our findings. Table 3 provides an overview of
these groupings.

For each category, we selected several questions to discuss. A
full categorization of questions can be found online [33]. The num-
bers next to the category titles denote the number of participants
that asked questions in that category and the total number of ques-
tions in that category — in parenthesis and brackets respectively.
Similarly, the number in parenthesis next to each question marks
the number of participants that asked that question.

The structure of most results categories consists of three parts:
an overview of the category, several of the questions we selected,
and a discussion of those questions. However, some sections do
not contain any discussion either because participants’ intentions
in asking those questions were unclear, or participants asked the
questions without following up or attempting to answer them at all.

When discussing the questions participants asked for each cat-
egory, we will use phrases such as “X participants asked Y.” Note
that this work is exploratory and qualitative in nature. Though we
present information about the number of participants who ask spe-
cific questions, the reader should not infer any quantitative gener-
alizations.

4.2 Vulnerabilities, Attacks, and Fixes
4.2.1 Preventing & Understanding Attacks (10){11}

Unlike other types of code defects that may cause code to func-
tion unexpectedly or incorrectly, security vulnerabilities expose the
code to potential attacks. For example, the Servlet Parameter vul-
nerability (Table 2) introduced the possibility of SQL injection,
path traversal, command injection, and cross-site scripting attacks.

76

Is this a real vulnerability? (7)

What are the possible attacks that could occur? (5)

Why is this a vulnerability? (3)

How can I prevent this attack? (3)

How can I replicate an attack to exploit this vulnerability? (2)
What is the problem (potential attack)? (2)

Participants sought information about the types of attacks that
could occur in a given context. To that end, five participants asked,
What are the possible attacks that could occur? For example, within
the first minute of his analysis P2 read the notification about the
Path Traversal vulnerability and stated, “I guess I'm thinking about
different types of attacks.” Before reasoning about how a specific
attack could be executed, he wanted to determine which attacks
were relevant to the notification.

Participants also sought information about specific attacks from
the notification, asking how particular attacks could exploit a given
vulnerability. Participants hypothesized about specific attack vec-
tors, how to execute those attacks, and how to prevent those attacks
now and in the future. Seven participants, concerned about false
positives, asked the question, Is this a real vulnerability? To an-
swer that question, participants searched for hints that an attacker
could successfully execute a given attack in a specific context. For
example, P10 determined that the Predictable Random vulnerabil-
ity was “real” because an attacker could deduce the random seed
and use that information to determine other users’ passwords.

4.2.2 Understanding Alt. Fixes & Approaches (8){11}

When resolving security vulnerabilities, participants explored al-
ternative ways to achieve the same functionality more securely.
For example, while evaluating the potential SQL Injection vul-
nerability, participants found resources that suggested using the
PreparedStatement class instead of Java statement class.

Does the alternative function the same as what I'm currently us-
ing? (6)

What are the alternatives for fixing this? (4)

Are there other considerations to make when using the alterna-
tive(s)? (3)

How does my code compare to the alternative code in the example
I found? (2)

Why should I use this alternative method/approach to fix the vul-
nerability? (2)

Some notifications, including those for the SQL Injection and
Predictable Random vulnerabilities, explicitly offered alternative
fixes. In other cases, participants turned to a variety of sources,
such as StackOverflow, official documentation, and personal blogs
for alternative approaches.

Three participants specifically cited StackOverflow as a source
for alternative approaches and fixes. P7 preferred StackOverflow
as a resource, because it included real-world examples of broken
code and elaborated on why the example was broken. Despite the
useful information some participants found, often the candidate al-
ternative did not readily provide meta-information about the pro-
cess of applying it to the code. For example, P9 found a suggestion
on StackOverflow that he thought might work, but it was not clear
if it could be applied to the code in iTrust.

While attempting to assess the Servlet Parameter vulnerability,
P8 decided to explore some resources on the web and came across
aresource that appeared to be affiliated with OWASP [40]. Because
he recognized OWASP as “the authority on security,” he clicked the
link and used it to make his final decision regarding the vulnerabil-

Table 3: Organizational Groups and Emergent Categories

Application Context/Usage
End-User Interaction

Group Category Clusters | Location in Paper
Preventing and Understanding Potential Attacks 11 Section 4.2.1
o . Understanding Alternative Fixes and Approaches 11 Section 4.2.2
Vulnerabilities, Attacks, and Fixes Assessing the Application of the Fix 9 Section 4.2.3
Relationship Between Vulnerabilities 3 Section 4.2.4
Locating Information 11 Section 4.3.1
Control Flow and Call Information 13 Section 4.3.2
L Data Storage and Flow 11 Section 4.3.3
Code and the Application Code Background and Functionality 17 Section 4.3.4

9 Section 4.3.5
3 Section 4.3.6

Individuals Understanding Concepts

Confirming Expectations

Developer Planning and Self-Reflection

14 Section 4.4.1
6 Section 4.4.2
1 Section 4.4.3

Problem Solving Support

Notification Text

Resources and Documentation
Understanding and Interacting with Tools 9
Vulnerability Severity and Rank

10 Section 4.5.1
Section 4.5.2
4 Section 4.5.3
3 Section 4.5.4

Uncategorized

10

ity. It seemed important to P8 that recommended approaches came
from trustworthy sources.

4.2.3 Assessing the Application of the Fix (9){9}

Once participants had identified an approach for fixing a secu-
rity vulnerability (Section 4.2.2), they asked questions about apply-
ing the fix to the code. For example, while considering the use of
SecureRandom to resolve the Predictable Random vulnerability,
participants questioned the applicability of the fix and the conse-
quences of making the change. The questions in this category differ
from those in Understanding Alternative Fixes and Approaches
(Section 4.2.2). These questions focus on the process of applying
and reasoning about a given fix, rather than identifying and under-
standing possible fixes.

Will the notification go away when I apply this fix? (5)
How do I use this fix in my code? (4)

How do 1 fix this vulnerability? (4)

How hard is it to apply a fix to this code? (3)

Is there a quick fix for automatically applying a fix? (2)
Will the code work the same after I apply the fix? (2)

What other changes do I need to make to apply this fix? (2)

When searching for approaches to resolve vulnerabilities, par-
ticipants gravitated toward fix suggestions provided by the notifi-
cation. As noted above, the notifications associated with the Pre-
dictable Random vulnerability and the SQL Injection vulnerability
both provided fix suggestions. All participants proposed solutions
that involved applying one or both of these suggestions. Specifi-
cally, P2 commented that it would be nice if all the notifications
contained fix suggestions.

However, unless prompted, none of the participants commented
on the disadvantages of using fix suggestions. While exploring the
Predictable Random vulnerability, many participants, including P1,
P2, and P6, decided to use SecureRandom without considering
any alternative solutions, even though the use of that suggested fix
reduces performance. It seems that providing suggestions with-
out discussing the associated trade-offs appeared to reduce partici-
pants’ willingness to think broadly about other possible solutions.

77

4.2.4 Relationship Between Vulnerabilities (4){3}

Some participants asked questions about the connections between
co-occurring vulnerabilities and whether similar vulnerabilities ex-
ist elsewhere in the code. For example, when participants reached
the third and fourth vulnerabilities, they began speculating about
the similarities between the vulnerabilities they inspected.

Are all the vulnerabilities related in my code? (3)
Does this other piece code have the same vulnerability as the code
I'm working with? (1)

4.3 Code and the Application

4.3.1 Locating Information (10){11}

Participants asked questions about locating information in their
coding environments. In the process of investigating vulnerabili-
ties, participants searched for information across multiple classes
and files. Unlike Sections 4.3.2 and 4.3.3, questions in this cat-
egory more generally refer to the process of locating information,
not just about locating calling information or data flow information.

Where is this used in the code? (10)
Where are other similar pieces of code? (4)
Where is this method defined? (1)

All ten participants wanted to locate where defective code and
tainted values were in the system. Most of these questions occurred
in the context of assessing the Predictable Random vulnerability.
Specifically, participants wondered where the potentially insecure
random number generator was being used and whether it was em-
ployed generate sensitive data like passwords.

In other cases, while fixing one method, four participants wanted
to find other methods that implemented similar functionality. They
hypothesized that other code modules implemented the same func-
tionality using more secure patterns. For example, while assessing
the SQL Injection vulnerability, P2 and P5 both wanted to find other
modules that created SQL statements. All participants completed
this task manually by scrolling through the package explorer and
searching for code using their knowledge of the application.

4.3.2 Control Flow and Call Information (10){13}

Participants sought information about the callers and callees of
potentially vulnerable methods.

Where is the method being called? (10)

How can I get calling information? (7)

Who can call this? (5)

Are all calls coming from the same class? (3)
What gets called when this method gets called? (2)

Participants asked some of these questions while exploring the
Path Traversal vulnerability. While exploring this vulnerability,
many participants eventually hypothesized that all the calls origi-
nated from the same test class, therefore were not user-facing, and
thus would not be called with tainted values. Three participants ex-
plicitly asked, Are all calls coming from the same class? In fact,
in this case, participants’ hypotheses were partially correct. Trac-
ing up the call chains, the method containing the vulnerability was
called from multiple classes, however those classes were all con-
tained within a test package.

Even though all participants did not form this same hypothesis,
all ten participants wanted call information for the Path Traversal
Vulnerability, often asking the question, Where is this method being
called? However, participants used various strategies to obtain the
same information. The most basic strategy was simply skimming
the file for method calls, which was error-prone because partici-
pants could easily miss calls. Other participants used the Eclipse’s
MARK OCCURRENCES tool (code highlighting in Figure 1), which,
to a lesser extent, was error-prone for the same reason. Further, it
only highlighted calls within the current file.

Participants additionally employed Eclipse’s FIND tool, which
found all occurrences of a method name, but there was no guarantee
that strings returned referred to the same method. Also, it returned
references that occurred in dead code or comments. Alternatively,
Eclipse’s FIND REFERENCES tool identified proper references to a
single method. Eclipse’s CALL HIERARCHY tool enabled users to
locate calls and traverse the project’s entire call structure. That said,
it only identified explicit calls made from within the system. If the
potentially vulnerable code was called from external frameworks,
CALL HIERARCHY would not alert the user.

4.3.3 Data Storage and Flow (10){11}

Participants often wanted to better understand data being col-
lected and stored: where it originated and where it was going.
For example, participants wanted to determine whether data was
generated by the application or passed in by the user. Participants
also wanted to know if the data touched sensitive resources like a
database. Questions in this category focus on the application’s data
— how it is created, modified, or used — unlike the questions in
Section 4.3.2 that revolve around call information, essentially the
paths through which the data can travel.

Where does this information/data go? (9)

Where is the data coming from? (5)

How is data put into this variable? (3)

Does data from this method/code travel to the database? (2)

How do 1 find where the information travels? (2)

How does the information change as it travels through the pro-
grams? (2)

Participants asked questions about the data pipeline while assess-
ing three of the four vulnerabilities, many of these questions arose
while assessing the Path Traversal vulnerability.

78

While exploring this vulnerability, participants adapted tools such
as the CALL HIERARCHY tool to also explore the program’s data
flow. As we discussed in Control Flow and Call Information,
the CALL HIERARCHY tool helped participants identify methods’
callers and callees. Specifically, some participants used the CALL
HIERARCHY tool to locate methods that were generating or mod-
ifying data. Once participants identified which methods were ma-
nipulating data, they manually searched within the method for the
specific statements that could modify or create data. They relied on
manual searching, because the tool they were using to navigate the
program’s flow, CALL HIERARCHY, did not provide information
about which statements were modifying and creating data.

4.3.4 Code Background and Functionality (9){17}

Participants asked questions concerning the background and the
intended function of the code being analyzed. The questions in this
category differ from those in Section 4.3.5 because they focus on
the lower-level implementation details of the code.

What does this code do? (9)

Why was this code written this way? (5)
Why is this code needed? (3)

Who wrote this code? (2)

Is this library code? (2)

How much effort was put into this code? (1)

Participants were interested in what the code did as well as the
history of the code. For example, P2 asked about the amount of
effort put into the code to determine whether he trusted that the
code was written securely. He explained, “People were rushed
and crunched for time, so I’'m not surprised to see an issue in the
servlets.” Knowing whether the code was thrown together haphaz-
ardly versus reviewed and edited carefully might help developers
determine if searching for vulnerabilities will likely yield true pos-
itives.

4.3.5 Application Context and Usage (9){9}

Unlike questions in Section 4.3.4, these questions refer to system-
level concepts. For instance, often while assessing the vulnerabil-
ities, participants wanted to know what the code was being used
for, whether it be testing, creating appointments with patients, or
generating passwords.

What is the context of this vulnerability/code? (4)

Is this code used to test the program/functionality? (4)
What is the method/variable used for in the program? (3)
Will usage of this method change? (2)

Is the method/variable ever being used? (2)

Participants tried to determine if the code in the Potential Path
Traversal vulnerability was used to test the system. P2, P4, P9,
and P10 asked whether the code they were examining occurred in
classes that were only used to test the application. To answer this
question, participants sometimes used tools for traversing the call
hierarchy; using these types of tools allowed them to narrow their
search to only locations where the code of interest was being called.

4.3.6 End-User Interaction (8){3}

Questions in this category deal with how end users might inter-
act with the system or a particular part of the system. Some partic-
ipants wanted to know whether users could access critical parts of
the code and if measures were being taken to mitigate potentially

malicious activity. For example, while assessing the Potential Path
Traversal vulnerability, participants wanted to know whether the
path is sanitized somewhere in the code before it is used.

Is there input coming from the user? (4)
Does the user have access to this code? (4)
Does user input get validated/sanitized? (4)

When assessing the Potential Path Traversal vulnerability, P1
and P6 wanted to know if the input was coming from the user along
with whether the input was being validated in the event that the in-
put did come from the user. For these participants, finding the an-
swer required manual inspection of surrounding and relevant code.
For instance, P6 found a validator method, which he manually
inspected, to determine if it was doing input validation. He incor-
rectly concluded that the validator method adequately validated
the data.

When assessing the Potential Path Traversal vulnerability, four
participants asked whether end-user input reached the code being
analyzed. P2 used CALL HIERARCHY to answer this question by
tracking where the method the code is contained in gets called; for
him, the vulnerability was a true positive if user input reached the
code. P1 and P6 searched similarly and determined that because
all the calls to the code of interest appeared to happen in methods
called testDataGenerator (), the code was not vulnerable.

4.4 Individuals
4.4.1 Developer Planning and Self-Reflection (8){ 14}

This category contains questions that participants asked about
themselves. The questions in this category involve the participants’
relationship to the problem, rather than specifics of the code or the
vulnerability notification.

Do I understand? (3)

What should 1 do first? (2)
What was that again? (2)

Is this worth my time? (2)
Why do I care? (2)

Have I seen this before? (1)
Where am I in the code? (1)

Participants most frequently asked if they understood the situa-
tion, whether it be the code, the notification, or a piece of docu-
mentation. For instance, as P6 started exploring the validity of the
SQL Injection vulnerability, he wanted to know if he fully under-
stood the notification before he started exploring, so he went back
to reread the notification before investigating further. These ques-
tions occurred in all four vulnerabilities.

4.4.2 Understanding Concepts (7){6}

Some participants encountered unfamiliar terms and concepts in
the code and vulnerability notifications. For instance, while parsing
the potential attacks listed in the notification for the Servlet Param-
eter vulnerability, some participants did not know what a CSRF
token was.

What is this concept? (6)
How does this concept work? (4)
What is the term for this concept? (2)

Participants often clicked links leading to more information about
specific concepts. For example, while assessing the Potential Path
Traversal vulnerability, P2, unsure of what path traversal was, clicked

the link labeled “path traversal attack™ provided by FSB to get more
information. If a link was not available, they went to the web to get
more information or noted that the notification could have included
more information on those concepts. While parsing the informa-
tion provided for the Predictable Random vulnerability, P7 and P8
did not know what CSRF token was. The notification for this vul-
nerability did not include links so they searched the web for more
information. When asked what information he would like to see
added to the notification for the Servlet Parameter vulnerability,
which also did not include any links, P4 noted he would have liked
the notification to include what a servlet is and how it related to
client control.

4.4.3 Confirming Expectations (4){1}

A few participants wanted to be able to confirm whether the code
accomplishes what they expected. The question asked in this cate-
gory was, Is this doing what I expect it to?

4.5 Problem Solving Support
4.5.1 Resources and Documentation (10){10}

Many participants indicated they would use external resources
and documentation to gain new perspectives on vulnerabilities. For
example, while assessing the Potential Path Traversal vulnerability,
participants wanted to know what their team members would do or
if they could provide any additional information about the vulnera-
bility.

Can my team members/resources provide me with more informa-
tion? (5)

Where can I get more information? (5)

What information is in the documentation? (5)

How do resources prevent or resolve this? (5)

Is this a reliable/trusted resource? (3)

What type of information does this resource link me to? (2)

All ten participants had questions regarding the resources and
documentation available to help them assess a given vulnerabil-
ity. Even with the links to external resources provided by two of
the notifications, participants still had questions about available re-
sources. Some participants used the links provided by FSB to get
more information about the vulnerability. Participants who did not
click the links in the notification had a few reasons for not doing
so. For some participants, the hyperlinked text was not descriptive
enough for them to know what information the link was offering;
others did not know if they could trust the information they found.

Some participants clicked FSB’s links expecting one type of in-
formation, but finding another. For example, P2 clicked the first
link, labeled “WASC: Path Traversal,” while trying to understand
the Potential Path Traversal vulnerability hoping to find informa-
tion on how to resolve the vulnerability. When he did not see that
information, he attempted another web search for the same infor-
mation. A few participants did not know the links existed, so they
typically used other strategies, such as searching the web.

Other participants expressed interest in consulting their team mem-
bers. For example, when P10 had difficulty with the Potential Path
Traversal vulnerability, he stated that he would normally ask his
team members to explain how the code worked. Presumably, the
code’s author could explain how the code was working, enabling
the developer to proceed with fixing the vulnerability.

4.5.2 Understanding and Interacting with Tools (8){9}

Throughout the study participants interacted with a variety of
tools including FSB, CALL HIERARCHY, and FIND REFERENCES.

While interacting with these tools, participants asked questions about
how to access specific tools, how to use the tools, and how to inter-
pret their output.

Why is the tool complaining? (3)

Can I verify the information the tool provides? (3)

What is the tool’s confidence? (2)

What is the tool output telling me? (1)

What tool do I need for this? (1)

How can I annotate that these strings have been escaped and the
tool should ignore the warning? (1)

Participants asked questions about accessing the tools needed to
complete a certain task. Participants sometimes sought information
from a tool, but could not determine how to invoke the tool or pos-
sibly did not know which tool to use. The question, What tool do
I need for this? points to a common blocker for both novice and
experienced developers, a lack of awareness [24].

4.5.3 Vulnerability Severity and Ranking (5){4}

FSB estimates the severity of each vulnerability it encounters
and reports those rankings to its users (Table 2). Participants asked
questions while interpreting these rankings.

How serious is this vulnerability? (2)

How do the rankings compare? (2)

What do the vulnerability rankings mean? (2)

Are all these vulnerabilities the same severity? (1)

Most of these questions came from participants wanting to know
more about the tool’s method of ranking the vulnerabilities in the
code. For example, after completing the first task (Potential Path
Traversal), P1 discovered the tool’s rank, severity, and confidence
reports. He noted how helpful the rankings seemed and included
them in his assessment process for the following vulnerabilities. As
he began working through the final vulnerability (SQL Injection),
he admitted that he did not understand the tool’s metrics as well as
he thought. He wasn’t sure what whether the rank (15) was high or
low and if yellow was a “good” or “bad” color. Some participants,
like P6, did not notice any of the rankings until after completing all
four sessions when the investigator asked about the tool’s rankings.

4.5.4 Notification Text (6){3}

FSB provided long and short descriptions of each vulnerability
(Figure 1). Participants read and contemplated these notifications
to guide their analysis.

What does the notification text say? (5)
What is the relationship between the notification text and the code?
(2)

What code caused this notification to appear (2)

Beyond asking about the content of the notification, participants
also asked questions about how to relate information contained in
the notification back to the code. For example, the Predictable Ran-
dom vulnerability notes that a predicable random value could lead
to an attack when being used in a secure context. Many partici-
pants attempted to relate this piece of information back to the code
by looking to see if anything about the code that suggested it is
in a secure context. In this situation, the method containing the
vulnerability was named randomPassword (), which suggested to
participants that the code was in a secure context and therefore a
vulnerability that should be resolved.

80

S. DISCUSSION

In this section we discuss two main implications of our work.

5.1 Flow Navigation

When iTrust performed security-sensitive operations, participants
wanted to determine if data originated from a malicious source by
tracing program flow. Similarly, given data from the user, partici-
pants were interested in determining how it was used in the applica-
tion and whether it was sanitized before being passed to a sensitive
operation. Questions related to these tasks appear in four different
categories (Sections 4.3.1, 4.3.2, 4.3.3, 4.3.6). We observed par-
ticipants using three strategies to answer program flow questions,
strategies that were useful, yet potentially error-prone.

First, when participants asked whether data comes from the user
(a user-facing source), and thus cannot be trusted, or if untrusted
data is being used in a sensitive operation, participants would navi-
gate through chains of method invocations. When participants nav-
igated through chains of method invocations, they were forced to
choose between different tools, where each tool had specific ad-
vantages and disadvantages. Lightweight tools, such as FIND and
MARK OCCURRENCES, could be easily invoked and the output eas-
ily interpreted, but they often required multiple invocations and
sometimes returned partial or irrelevant information. For example,
using MARK OCCURRENCES on a method declaration highlights all
invocations of the method within the containing file, but it does not
indicate invocations in other files. On the other hand, heavyweight
tools, such as CALL HIERARCHY and FIND REFERENCES, return
method invocations made from anywhere in the source code, but
were slower and clumsier for participants. Moreover, even heavy-
weight tools do not return all invocations when looking for tainted
data sources; for instance, CALL HIERARCHY does not indicate
when methods are being called from outside the system by a frame-
work.

Second, when participants asked whether a data source was user-
facing, participants would make inferences based on class names.
For instance, any class that started with Test participants assumed
was as JUnit test case, and thus was not user-facing, and therefore
not a potential source of tainted data. When participants made in-
ferences based on class names, their inferences were generally cor-
rect that the class name accurately described its role. However, this
strategy fails in situations where the word “Test” is overloaded; this
happens in iTrust where “Test” can also refer to a medical labora-
tory test.

Third, a common strategy for participants was to rely on their ex-
isting knowledge of sensitive operations and data sources in the ap-
plication. When participants relied on existing knowledge of sensi-
tive operations and data sources, such reliance may be failure-prone
whenever the code has been changed without their knowledge. In-
deed, prior research suggests that developers are less knowledge-
able about unstable code [7]. Additionally, when a developer only
contributes to a portion of the system, as is often the case in the
open source community [23], he may be unable to reason about the
system-wide implications of a change.

Much like work that examines more general programming tasks
[18], we observed that participants would have benefited from bet-
ter program flow navigation tools while investigating security vul-
nerabilities. Although researchers have proposed enhanced tools to
visualize call graphs [19] and trace control flow to its origin [3],
in a security context, these tools share the same limitations as the
existing heavyweight tools. Existing tools like CodeSonar [31] and
Coverity provide source-to-sink notifications for analyzing secu-
rity vulnerabilities, but take control away from the programmer by
forcing the developer into a tool-dictated workflow.

We envision a new tool that helps developers reason about con-
trol flow and data flow simultaneously, by combining the strengths
of existing heavy and lightweight tools. We imagine such a tool
could use existing heavyweight program analysis techniques, but
still use a lightweight user interface. For example, such a tool
might use a full-program, call hierarchy analysis technique in the
back end, but use a MARK OCCURRENCES-like user interface on
the front end. To indicate calls from outside the current class, addi-
tional lightweight notifications would be needed. Such a tool could
support both lightweight and systematic investigation of the flow of
potentially tainted data.

5.2 Structured Vulnerability Notifications

FSB provided explanatory notifications of potential vulnerabil-
ities. However, to completely resolve vulnerabilities, participants
performed many cognitively demanding tasks beyond simply locat-
ing the vulnerability and reading the notification, as is evidenced by
the breadth of questions they asked. To resolve potential vulnera-
bilities, we observed participants deploying a mix of several high-
level strategies including: inspecting the code; navigating to other
relevant areas of the code; comparing the vulnerability to previ-
ous vulnerabilities; consulting documentation and other resources;
weighing existing knowledge against information in the notifica-
tion; and reasoning about the feasibility of all the possible attacks.
Yet, these strategies were limited in three respects.

Participants used error-prone strategies even when more reliable
tools and strategies were available. For example, in Section 4.5.1,
we noted that participants, unaware of the relevant hyperlinks em-
bedded within the notification text, searched for links to external
resources using web search tools. The web searches often returned
irrelevant results. However, when the interviewer pointed out the
embedded links after the session, participants stated that they prob-
ably should have clicked them.

Second, even after choosing an effective strategy, participants
were often unaware of which tools to use to execute the strategy.
For example, while assessing the Servlet Parameter vulnerability,
participants wanted to determine whether certain input parameters
were ever validated, but were not aware of any tools to assist in this
process. Previous research suggests that both novice and experi-
enced developers face problems of tool awareness [24].

Third, regardless of the strategies and tools participants used,
they had to manually track their progress on each task. For exam-
ple, the Servlet Parameter vulnerability involved twelve tainted pa-
rameters and introduced the possibility of several types of attacks.
Participants had to reason about each of those attacks individually
and remember which attacks they had ruled out. In a more gen-
eral programming context, researchers have warned about the risks
of burdening developers” memories with too many concurrent tasks
— overburdening developers’ attentive memories can result in con-
centration failure and limit failure [26].

We envision an approach that addresses these limitations by ex-
plicating developers’ strategies in the form of hierarchically struc-
tured checklists. Previous research suggests that checklists can ef-
fectively guide developers [27]. We propose a structure that con-
tains hierarchical, customizable tasks for each type of notification.
For example, the structure would contain high-level tasks, such as
“Determine which attacks are feasible,” and subsequently more ac-
tionable nested subtasks, such as “Determine if a SQL injection
attack is feasible” or “Determine if an XSS attack is feasible.” This
structure would also include a checklist-like feature that allows
users to save the state of their interaction with a particular notifi-
cation — for example, checking off which attack vectors they have
already ruled out — diminishing the risk of concentration failure

81

and limit failure. Additionally, each task could include links to re-
sources that relate specifically to that task and tool suggestions that
could help developers complete the task.

6. THREATS TO VALIDITY

In this section we discuss the internal and external threats to the
validity of our study.

We faced the internal threat of recording questions that partici-
pants asked because they lacked a basic familiarity with the study
environment. We took two steps to mitigate this threat. First, we
required participants to have experience working on iTrust. Sec-
ond, at the beginning of each session, we briefed participants on
FSB and the development environment. During these briefing ses-
sions, we gave participants the opportunity to ask questions about
the environment and study setup, though we cannot say for certain
that participants asked all the questions they had at that time.

Thus, some of the questions we identified may reflect partici-
pants’ initial unfamiliarity with the study environment and FSB.
Since we are interested broadly in developers’ information needs,
the initial questions they ask about a new tool and environment still
are an important subset to capture.

Because this study was conducted in a controlled environment
rather than an industrial development setting, our results also face
a threat to their external validity. Though we cannot and do not
claim that we have identified a comprehensive categorization of all
security-related questions all developers might ask, we have made
several efforts to mitigate this threat. First, we included both stu-
dents and professionals in our sample, because developers with
more or less experience might ask different questions. Further,
participants were equipped with FSB, a representative open source
static analysis tool with respect to its user interface. Finally, we
chose iTrust, an industrial-scale open-source project as our subject
application.

Relatedly, participants may have spent an unrealistic amount of
time (either too much or too little) on each task due to working out-
side their normal work environment. To counteract this threat, we
did not restrict the amount of time alloted for each task. Further,
whenever a participant asked the interviewer what to do next, the
interviewer provided minimal guidance, typically prompting the
participant to proceed as she would in her normal work environ-
ment.

7. CONCLUSION

This paper reported on a study conducted to discover developers’
information needs while assessing security vulnerabilities in soft-
ware code. During the study, we asked ten software developers to
describe their thoughts as they assessed potential security vulnera-
bilities in iTrust, a security-critical web application. We presented
the results of our study as a categorization of questions. Our find-
ings have several implications for the design of static analysis tools.
Our results suggest that tools should help developers, among other
things, navigate program flow to sources of tainted data.

8. ACKNOWLEDGMENTS

We would like to thank our study participants. Special thanks
to Xi Ge, Anthony Elliott, Emma Laperruque, and the Developer
Liberation Front' for their assistance. This material is based upon
work supported by the National Science Foundation under grant
numbers 1318323 and DGE-0946818.

'research.csc.ncsu.edu/d1l£/

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]
(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

N. Ammar and M. Abi-Antoun. Empirical evaluation of
diagrams of the run-time structure for coding tasks. In
Reverse Engineering (WCRE), 2012 19th Working
Conference on, pages 367-376. IEEE, 2012.

A. Austin and L. Williams. One technique is not enough: A
comparison of vulnerability discovery techniques. In
Empirical Software Engineering and Measurement (ESEM),
2011 International Symposium on, pages 97-106. IEEE,
2011.

M. Barnett, R. DeLine, A. Lal, and S. Qadeer. Get me here:
Using verification tools to answer developer questions.
Technical Report MSR-TR-2014-10, February 2014.

H. Chen and D. Wagner. Mops: an infrastructure for
examining security properties of software. In Proceedings of
the 9th ACM conference on Computer and communications
security, pages 235-244. ACM, 2002.

L. Dukes, X. Yuan, and F. Akowuah. A case study on web
application security testing with tools and manual testing. In
Southeastcon, 2013 Proceedings of IEEE, pages 1-6. IEEE,
2013.

T. Fritz and G. C. Murphy. Using information fragments to
answer the questions developers ask. In Proceedings of the
32nd ACM/IEEE International Conference on Software
Engineering-Volume 1, pages 175-184. ACM, 2010.

T. Fritz, G. C. Murphy, E. Murphy-Hill, J. Ou, and E. Hill.
Degree-of-knowledge: Modeling a developer’s knowledge of
code. ACM Trans. Softw. Eng. Methodol., 23(2):14:1-14:42,
Apr. 2014.

B. G. Glaser and A. L. Strauss. The discovery of grounded
theory: Strategies for qualitative research. Transaction
Publishers, 2009.

G. Guest, A. Bunce, and L. Johnson. How many interviews
are enough? an experiment with data saturation and
variability. Field methods, 18(1):59-82, 2006.

W. Hudson. Card Sorting. The Interaction Design
Foundation, Aarhus, Denmark, 2013.

B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge.
Why don’t software developers use static analysis tools to
find bugs? In Software Engineering (ICSE), 2013 35th
International Conference on, pages 672—-681. IEEE, 2013.
N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static
analysis tool for detecting web application vulnerabilities. In
Security and Privacy, 2006 IEEE Symposium on, pages
6—pp. IEEE, 2006.

A.J. Ko, R. DeLine, and G. Venolia. Information needs in
collocated software development teams. In Proceedings of
the 29th international conference on Software Engineering,
pages 344-353. IEEE Computer Society, 2007.

A.J. Ko and B. A. Myers. Designing the whyline: a
debugging interface for asking questions about program
behavior. In Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 151-158. ACM,
2004.

O. Kononenko, D. Dietrich, R. Sharma, and R. Holmes.
Automatically locating relevant programming help online. In
Visual Languages and Human-Centric Computing
(VL/HCC), 2012 IEEE Symposium on, pages 127-134.
IEEE, 2012.

J. R. Landis and G. G. Koch. The measurement of observer
agreement for categorical data. Biometrics, 33(1):pp.
159-174, 19717.

82

(171

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]
[33]

[34]

T. D. LaToza and B. A. Myers. Developers ask reachability
questions. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume
1, pages 185-194. ACM, 2010.

T. D. LaToza and B. A. Myers. Hard-to-answer questions
about code. In Evaluation and Usability of Programming
Languages and Tools, page 8. ACM, 2010.

T. D. LaToza and B. A. Myers. Visualizing call graphs. In
Visual Languages and Human-Centric Computing
(VL/HCC), 2011 IEEE Symposium on, pages 117-124.
IEEE, 2011.

S. Letovsky. Cognitive processes in program comprehension.
Journal of Systems and software, 7(4):325-339, 1987.

V. B. Livshits and M. S. Lam. Finding security
vulnerabilities in java applications with static analysis. In
Usenix Security, pages 18-18, 2005.

M. Martin, B. Livshits, and M. S. Lam. Finding application
errors and security flaws using pql: a program query
language. In ACM SIGPLAN Notices, volume 40, pages
365-383. ACM, 2005.

A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case
studies of open source software development: Apache and
mozilla. ACM Trans. Softw. Eng. Methodol., 11(3):309-346,
July 2002.

E. Murphy-Hill, R. Jiresal, and G. C. Murphy. Improving
software developers’ fluency by recommending development
environment commands. In Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, FSE *12, pages 42:1-42:11, New
York, NY, USA, 2012. ACM.

J. Nielsen, T. Clemmensen, and C. Yssing. Getting access to
what goes on in people’s heads?: reflections on the
think-aloud technique. In Proceedings of the second Nordic
conference on Human-computer interaction, pages 101-110.
ACM, 2002.

C. Parnin and S. Rugaber. Programmer information needs
after memory failure. In Program Comprehension (ICPC),
2012 IEEE 20th International Conference on, pages
123-132. IEEE, 2012.

K. Y. Phang, J. S. Foster, M. Hicks, and V. Sazawal. Triaging
checklists: a substitute for a phd in static analysis.
Evaluation and Usability of Programming Languages and
Tools (PLATEAU) PLATEAU 2009, 2009.

F. Servant and J. A. Jones. History slicing: assisting
code-evolution tasks. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of
Software Engineering, page 43. ACM, 2012.

Y. Yoon, B. A. Myers, and S. Koo. Visualization of
fine-grained code change history. In Visual Languages and
Human-Centric Computing (VL/HCC), 2013 IEEE
Symposium on, pages 119-126. IEEE, 2013.

Nist source code security analyzers.
http://samate.nist.gov/index.php/Source_
Code_Security_Analyzers.html.

Codesonar. http://grammatech.com/codesonar.
Coverity. http://coverity.com/.

Security questions experimental materials.
http://http://wwwéd.ncsu.edu/~bijohnso/
security-questions.html.

Findbugs. http://findbugs.sourceforge.net.

[35] Find security bugs. http: [40] Owasp.

//h3xstream.github.io/find-sec-bugs/. http://owasp.org/index.php/Main_Page.
[36] Hippa statute. http://hhs.gov/ocr/privacy/. [41] Web application security consortium static code analysis
[37] itrust software system. http://agile.csc.ncsu. tools. http://projects.webappsec.org/w/

edu/iTrust/wiki/doku.php?id=start. page/61622133/StaticCodeAnalysisList.

[38] Otranscribe. http://otranscribe.com.
[39] Owasp source code analysis tools. http://owasp.org/
index.php/Source_Code_Analysis_Tools.

83

